Mostrar el registro sencillo del ítem
dc.contributor.author | Lisón Párraga, María Purificación | es_ES |
dc.contributor.author | Tarraga Herrero, Susana | es_ES |
dc.contributor.author | López Gresa, Mª Pilar | es_ES |
dc.contributor.author | Sauri Ferrando, Asunción | es_ES |
dc.contributor.author | Torres Vidal, Cristina | es_ES |
dc.contributor.author | Campos Beneyto, Laura | es_ES |
dc.contributor.author | Belles Albert, José Mª | es_ES |
dc.contributor.author | Conejero Tomás, Vicente | es_ES |
dc.contributor.author | Rodrigo Bravo, Ismael | es_ES |
dc.date.accessioned | 2016-03-14T14:02:47Z | |
dc.date.issued | 2013-03 | |
dc.identifier.issn | 1615-9853 | |
dc.identifier.uri | http://hdl.handle.net/10251/61835 | |
dc.description | This is the accepted version of the following article: Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., Bellés, J. M., Conejero, V. and Rodrigo, I. (2013), A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. Proteomics, 13: 833–844, which has been published in final form at http://dx.doi.org/10.1002/pmic.201200286. | es_ES |
dc.description.abstract | Viroids are single-stranded, circular, noncoding RNAs that infect plants, causing devastating diseases. In this work, we employed 2D DIGE, followed by MS identification, to analyze the response of tomato plants infected by Citrus exocortis viroid (CEVd). Among the differentially expressed proteins detected, 45 were successfully identified and classified into different functional categories. Validation results by RT-PCR allowed us to classify the proteins into two expression groups. First group included genes with changes at the transcriptional level upon CEVd infection, such as an endochitinase, a β-glucanase, and pathogenesis-related proteins, PR10 and P69G. All these defense proteins were also induced by gentisic acid, a pathogen-induced signal in compatible interactions. The second group of proteins showed no changes at the transcriptional level and included several ribosomal proteins and translation factors, such as the elongation factors 1 and 2 and the translation initiation factor 5-alpha. These results were validated by 2D Western blot, and possible PTMs caused by CEVd infection were detected. Moreover, an interaction between eukaryotic elongation factor 1 and CEVd was observed by 2D Northwestern. The present study provides new protein-related information on the mechanisms of plant resistance to pathogens. | es_ES |
dc.description.sponsorship | We would like to thank the Proteomic Service of the IBMCP (Instituto de Biologia Molecular y Celular de Plantas, Valencia, Spain) for the technical assistance. We also thank Dr. Alejandro Ferrando (Instituto de Biologia Molecular y Celular de Plantas UPV-CSIC) for critical reading of the manuscript, discussions, and for kindly providing us with the eIF5A antisera. We are also grateful to Dr. Brenda Hunter (University of Arizona) for both eEF1A and eEF2 antiserum. This work was supported by Grant BFU2009-11958 from Direccion General de Programas y Transferencia de Conocimiento, from Spanish Ministry of Science and Innovation. Laura Campos was the recipient of a predoctoral fellowship ACIF/2010/231 from Generalitat Valenciana (Spain). M. Pilar Lopez-Gresa held a postdoctoral fellowship JAEDoc_08_ 00402 from the Consejo Superior de Investigaciones Cientificas (Spain). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Proteomics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 2D DIGE | es_ES |
dc.subject | Plant stress | es_ES |
dc.subject | Tomato | es_ES |
dc.subject | Translation factors | es_ES |
dc.subject | Viroid | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/pmic.201200286 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-11958/ES/Señalizacion Y Respuesta Defensiva De Las Plantas Frente A Patogenos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F231/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CSIC//JAEDoc 08 00402/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Lisón Párraga, MP.; Tarraga Herrero, S.; López Gresa, MP.; Sauri Ferrando, A.; Torres Vidal, C.; Campos Beneyto, L.; Belles Albert, JM.... (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. Proteomics. 13(5):833-844. https://doi.org/10.1002/pmic.201200286 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/pmic.201200286 | es_ES |
dc.description.upvformatpinicio | 833 | es_ES |
dc.description.upvformatpfin | 844 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 253922 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.description.references | Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243 | es_ES |
dc.description.references | Ding, B., & Itaya, A. (2007). Viroid: A Useful Model for Studying the Basic Principles of Infection and RNA Biology. Molecular Plant-Microbe Interactions, 20(1), 7-20. doi:10.1094/mpmi-20-0007 | es_ES |
dc.description.references | Ding, B., Kwon, M.-O., Hammond, R., & Owens, R. (1997). Cell-to-cell movement of potato spindle tuber viroid. The Plant Journal, 12(4), 931-936. doi:10.1046/j.1365-313x.1997.12040931.x | es_ES |
dc.description.references | Zhu, Y., Green, L., Woo, Y.-M., Owens, R., & Ding, B. (2001). Cellular Basis of Potato Spindle Tuber Viroid Systemic Movement. Virology, 279(1), 69-77. doi:10.1006/viro.2000.0724 | es_ES |
dc.description.references | Qi, Y., Pélissier, T., Itaya, A., Hunt, E., Wassenegger, M., & Ding, B. (2004). Direct Role of a Viroid RNA Motif in Mediating Directional RNA Trafficking across a Specific Cellular Boundary. The Plant Cell, 16(7), 1741-1752. doi:10.1105/tpc.021980 | es_ES |
dc.description.references | Flores, R., Grubb, D., Elleuch, A., Nohales, M.-Á., Delgado, S., & Gago, S. (2011). Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme. RNA Biology, 8(2), 200-206. doi:10.4161/rna.8.2.14238 | es_ES |
dc.description.references | Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927 | es_ES |
dc.description.references | Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7 | es_ES |
dc.description.references | Vera, P., & Conejero, V. (1988). Pathogenesis-Related Proteins of Tomato. Plant Physiology, 87(1), 58-63. doi:10.1104/pp.87.1.58 | es_ES |
dc.description.references | Breijo, F. J. G., Garro, R., & Conejero, V. (1990). C7(P32) and C6(P34) PR proteins induced in tomato leaves by citrus exocortis viroid infection are chitinases. Physiological and Molecular Plant Pathology, 36(3), 249-260. doi:10.1016/0885-5765(90)90029-w | es_ES |
dc.description.references | Domingo, C., Conejero, V., & Vera, P. (1994). Genes encoding acidic and basic class III ?-1,3-glucanases are expressed in tomato plants upon viroid infection. Plant Molecular Biology, 24(5), 725-732. doi:10.1007/bf00029854 | es_ES |
dc.description.references | Bellés, J. M., Granell, A., Durán-vila, N., & Conejero, V. (1989). ACC Synthesis as the Activated Step Responsible for the Rise of Ethylene Production Accompanying Citrus Exocortis Viroid Infection in Tomato Plants. Journal of Phytopathology, 125(3), 198-208. doi:10.1111/j.1439-0434.1989.tb01061.x | es_ES |
dc.description.references | Belles, J. M., Perez-Amador, M. A., Carbonell, J., & Conejero, V. (1993). Correlation between Ornithine Decarboxylase and Putrescine in Tomato Plants Infected by Citrus Exocortis Viroid or Treated with Ethephon. Plant Physiology, 102(3), 933-937. doi:10.1104/pp.102.3.933 | es_ES |
dc.description.references | Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227 | es_ES |
dc.description.references | Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014 | es_ES |
dc.description.references | Tárraga, S., Lisón, P., López-Gresa, M. P., Torres, C., Rodrigo, I., Bellés, J. M., & Conejero, V. (2010). Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. Journal of Experimental Botany, 61(15), 4325-4338. doi:10.1093/jxb/erq234 | es_ES |
dc.description.references | Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8 | es_ES |
dc.description.references | López-Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). Metabolic response of tomato leaves upon different plantâ pathogen interactions. Phytochemical Analysis, 21(1), 89-94. doi:10.1002/pca.1179 | es_ES |
dc.description.references | Eggert, K., & Pawelzik, E. (2011). Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum). PROTEOMICS, 11(5), 972-985. doi:10.1002/pmic.201000322 | es_ES |
dc.description.references | Li, Y., Zhang, Z., Nie, Y., Zhang, L., & Wang, Z. (2012). Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice. PROTEOMICS, 12(14), 2340-2354. doi:10.1002/pmic.201200054 | es_ES |
dc.description.references | Xu, Q.-F., Cheng, W.-S., Li, S.-S., Li, W., Zhang, Z.-X., Xu, Y.-P., … Cai, X.-Z. (2012). Identification of genes required for Cf-dependent hypersensitive cell death by combined proteomic and RNA interfering analyses. Journal of Experimental Botany, 63(7), 2421-2435. doi:10.1093/jxb/err397 | es_ES |
dc.description.references | Castillejo, M. Á., Fernández-Aparicio, M., & Rubiales, D. (2011). Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. Journal of Experimental Botany, 63(1), 107-119. doi:10.1093/jxb/err246 | es_ES |
dc.description.references | Badillo-Vargas, I. E., Rotenberg, D., Schneweis, D. J., Hiromasa, Y., Tomich, J. M., & Whitfield, A. E. (2012). Proteomic Analysis of Frankliniella occidentalis and Differentially Expressed Proteins in Response toTomato Spotted Wilt VirusInfection. Journal of Virology, 86(16), 8793-8809. doi:10.1128/jvi.00285-12 | es_ES |
dc.description.references | Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053 | es_ES |
dc.description.references | Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., … Mann, M. (1996). Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences, 93(25), 14440-14445. doi:10.1073/pnas.93.25.14440 | es_ES |
dc.description.references | Varó, I., Rigos, G., Navarro, J. C., del Ramo, J., Calduch-Giner, J., Hernández, A., … Torreblanca, A. (2010). Effect of ivermectin on the liver of gilthead sea bream Sparus aurata: A proteomic approach. Chemosphere, 80(5), 570-577. doi:10.1016/j.chemosphere.2010.04.030 | es_ES |
dc.description.references | Pauwels, K., Sanchez del Pino, M. M., Feller, G., & Van Gelder, P. (2012). Decoding the Folding of Burkholderia glumae Lipase: Folding Intermediates En Route to Kinetic Stability. PLoS ONE, 7(5), e36999. doi:10.1371/journal.pone.0036999 | es_ES |
dc.description.references | Dube, A., Bisaillon, M., & Perreault, J.-P. (2009). Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid. Journal of Virology, 83(23), 12057-12067. doi:10.1128/jvi.01151-09 | es_ES |
dc.description.references | Rodrigo, I., Vera, P., Frank, R., & Conejero, V. (1991). Identification of the viroid-induced tomato pathogenesis-related (PR) protein P23 as the thaumatin-like tomato protein NP24 associated with osmotic stress. Plant Molecular Biology, 16(5), 931-934. doi:10.1007/bf00015088 | es_ES |
dc.description.references | Tornero, P., Gadea, J., Conejero, V., & Vera, P. (1997). TwoPR-1Genes from Tomato Are Differentially Regulated and Reveal a Novel Mode of Expression for a Pathogenesis-Related Gene During the Hypersensitive Response and Development. Molecular Plant-Microbe Interactions, 10(5), 624-634. doi:10.1094/mpmi.1997.10.5.624 | es_ES |
dc.description.references | Takeda, R., & Ding, B. (2009). Viroid Intercellular Trafficking: RNA Motifs, Cellular Factors and Broad Impacts. Viruses, 1(2), 210-221. doi:10.3390/v1020210 | es_ES |
dc.description.references | Kavroulakis, N., Ntougias, S., Zervakis, G. I., Ehaliotis, C., Haralampidis, K., & Papadopoulou, K. K. (2007). Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. Journal of Experimental Botany, 58(14), 3853-3864. doi:10.1093/jxb/erm230 | es_ES |
dc.description.references | Larson, R. L., Hill, A. L., & Nuñez, A. (2007). Characterization of Protein Changes Associated with Sugar Beet (Beta vulgaris) Resistance and Susceptibility toFusarium oxysporum. Journal of Agricultural and Food Chemistry, 55(19), 7905-7915. doi:10.1021/jf070876q | es_ES |
dc.description.references | Swoboda, I., Hoffmann-Sommergruber, K., O’Riordain, G., Scheiner, O., Heberle-Bors, E., & Vicente, O. (1996). Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiologia Plantarum, 96(3), 433-438. doi:10.1111/j.1399-3054.1996.tb00455.x | es_ES |
dc.description.references | Zhou, X.-J., Lu, S., Xu, Y.-H., Wang, J.-W., & Chen, X.-Y. (2002). A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Science, 162(4), 629-636. doi:10.1016/s0168-9452(02)00002-x | es_ES |
dc.description.references | Park, C.-J., Kim, K.-J., Shin, R., Park, J. M., Shin, Y.-C., & Paek, K.-H. (2003). Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal, 37(2), 186-198. doi:10.1046/j.1365-313x.2003.01951.x | es_ES |
dc.description.references | Chen, Z.-Y., Brown, R. L., Rajasekaran, K., Damann, K. E., & Cleveland, T. E. (2006). Identification of a Maize Kernel Pathogenesis-Related Protein and Evidence for Its Involvement in Resistance toAspergillus flavusInfection and Aflatoxin Production. Phytopathology, 96(1), 87-95. doi:10.1094/phyto-96-0087 | es_ES |
dc.description.references | Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., … Dietrich, R. A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26(4), 403-410. doi:10.1038/82521 | es_ES |
dc.description.references | Lodha, T. D., & Basak, J. (2011). Plant–Pathogen Interactions: What Microarray Tells About It? Molecular Biotechnology, 50(1), 87-97. doi:10.1007/s12033-011-9418-2 | es_ES |
dc.description.references | Carvalho, C. M., Santos, A. A., Pires, S. R., Rocha, C. S., Saraiva, D. I., Machado, J. P. B., … Fontes, E. P. B. (2008). Regulated Nuclear Trafficking of rpL10A Mediated by NIK1 Represents a Defense Strategy of Plant Cells against Virus. PLoS Pathogens, 4(12), e1000247. doi:10.1371/journal.ppat.1000247 | es_ES |
dc.description.references | Fukushi, S., Okada, M., Stahl, J., Kageyama, T., Hoshino, F. B., & Katayama, K. (2001). Ribosomal Protein S5 Interacts with the Internal Ribosomal Entry Site of Hepatitis C Virus. Journal of Biological Chemistry, 276(24), 20824-20826. doi:10.1074/jbc.c100206200 | es_ES |
dc.description.references | Eiras, M., Nohales, M. A., Kitajima, E. W., Flores, R., & Daròs, J. A. (2010). Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 156(3), 529-533. doi:10.1007/s00705-010-0867-x | es_ES |
dc.description.references | Mateyak, M. K., & Kinzy, T. G. (2010). eEF1A: Thinking Outside the Ribosome. Journal of Biological Chemistry, 285(28), 21209-21213. doi:10.1074/jbc.r110.113795 | es_ES |
dc.description.references | Li, Z., Pogany, J., Tupman, S., Esposito, A. M., Kinzy, T. G., & Nagy, P. D. (2010). Translation Elongation Factor 1A Facilitates the Assembly of the Tombusvirus Replicase and Stimulates Minus-Strand Synthesis. PLoS Pathogens, 6(11), e1001175. doi:10.1371/journal.ppat.1001175 | es_ES |
dc.description.references | Yamaji, Y., Sakurai, K., Hamada, K., Komatsu, K., Ozeki, J., Yoshida, A., … Hibi, T. (2009). Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection. Archives of Virology, 155(2), 263-268. doi:10.1007/s00705-009-0571-x | es_ES |
dc.description.references | Hopkins, M. T., Lampi, Y., Wang, T.-W., Liu, Z., & Thompson, J. E. (2008). Eukaryotic Translation Initiation Factor 5A Is Involved in Pathogen-Induced Cell Death and Development of Disease Symptoms in Arabidopsis. Plant Physiology, 148(1), 479-489. doi:10.1104/pp.108.118869 | es_ES |
dc.description.references | Szick-Miranda, K., Jayachandran, S., Tam, A., Werner-Fraczek, J., Williams, A. J., & Bailey-Serres, J. (2003). Evaluation of Translational Control Mechanisms in Response to Oxygen Deprivation in Maize. Russian Journal of Plant Physiology, 50(6), 774-786. doi:10.1023/b:rupp.0000003275.97021.2b | es_ES |
dc.description.references | Castelló, A., Quintas, A., Sánchez, E. G., Sabina, P., Nogal, M., Carrasco, L., & Revilla, Y. (2009). Regulation of Host Translational Machinery by African Swine Fever Virus. PLoS Pathogens, 5(8), e1000562. doi:10.1371/journal.ppat.1000562 | es_ES |
dc.description.references | Sanz, M. Á., Castelló, A., Ventoso, I., Berlanga, J. J., & Carrasco, L. (2009). Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells. PLoS ONE, 4(3), e4772. doi:10.1371/journal.pone.0004772 | es_ES |
dc.description.references | Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. C., & Brierley, I. (2006). A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature, 441(7090), 244-247. doi:10.1038/nature04735 | es_ES |
dc.description.references | Jao, D. L.-E., & Chen, K. Y. (2006). Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. Journal of Cellular Biochemistry, 97(3), 583-598. doi:10.1002/jcb.20658 | es_ES |
dc.description.references | Zanelli, C. F., Maragno, A. L. C., Gregio, A. P. B., Komili, S., Pandolfi, J. R., Mestriner, C. A., … Valentini, S. R. (2006). eIF5A binds to translational machinery components and affects translation in yeast. Biochemical and Biophysical Research Communications, 348(4), 1358-1366. doi:10.1016/j.bbrc.2006.07.195 | es_ES |
dc.description.references | Greganova, E., Altmann, M., & Bütikofer, P. (2011). Unique modifications of translation elongation factors. FEBS Journal, 278(15), 2613-2624. doi:10.1111/j.1742-4658.2011.08199.x | es_ES |
dc.description.references | Gupta, P. K., Liu, S., Batavia, M. P., & Leppla, S. H. (2008). The diphthamide modification on elongation factor-2 renders mammalian cells resistant to ricin. Cellular Microbiology, 10(8), 1687-1694. doi:10.1111/j.1462-5822.2008.01159.x | es_ES |
dc.description.references | Ji, W. T., Wang, L., Lin, R. C., Huang, W. R., & Liu, H. J. (2009). Avian reovirus influences phosphorylation of several factors involved in host protein translation including eukaryotic translation elongation factor 2 (eEF2) in Vero cells. Biochemical and Biophysical Research Communications, 384(3), 301-305. doi:10.1016/j.bbrc.2009.04.116 | es_ES |
dc.description.references | Yamasaki, S., & Anderson, P. (2008). Reprogramming mRNA translation during stress. Current Opinion in Cell Biology, 20(2), 222-226. doi:10.1016/j.ceb.2008.01.013 | es_ES |
dc.description.references | Sano, T., Barba, M., Li, S.-F., & Hadidi, A. (2010). Viroids and RNA silencing: Mechanism, role in viroid pathogenicity and development of viroid-resistant plants. GM Crops, 1(2), 23-29. doi:10.4161/gmcr.1.2.11871 | es_ES |