- -

A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lisón Párraga, María Purificación es_ES
dc.contributor.author Tarraga Herrero, Susana es_ES
dc.contributor.author López Gresa, Mª Pilar es_ES
dc.contributor.author Sauri Ferrando, Asunción es_ES
dc.contributor.author Torres Vidal, Cristina es_ES
dc.contributor.author Campos Beneyto, Laura es_ES
dc.contributor.author Belles Albert, José Mª es_ES
dc.contributor.author Conejero Tomás, Vicente es_ES
dc.contributor.author Rodrigo Bravo, Ismael es_ES
dc.date.accessioned 2016-03-14T14:02:47Z
dc.date.issued 2013-03
dc.identifier.issn 1615-9853
dc.identifier.uri http://hdl.handle.net/10251/61835
dc.description This is the accepted version of the following article: Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., Bellés, J. M., Conejero, V. and Rodrigo, I. (2013), A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. Proteomics, 13: 833–844, which has been published in final form at http://dx.doi.org/10.1002/pmic.201200286. es_ES
dc.description.abstract Viroids are single-stranded, circular, noncoding RNAs that infect plants, causing devastating diseases. In this work, we employed 2D DIGE, followed by MS identification, to analyze the response of tomato plants infected by Citrus exocortis viroid (CEVd). Among the differentially expressed proteins detected, 45 were successfully identified and classified into different functional categories. Validation results by RT-PCR allowed us to classify the proteins into two expression groups. First group included genes with changes at the transcriptional level upon CEVd infection, such as an endochitinase, a β-glucanase, and pathogenesis-related proteins, PR10 and P69G. All these defense proteins were also induced by gentisic acid, a pathogen-induced signal in compatible interactions. The second group of proteins showed no changes at the transcriptional level and included several ribosomal proteins and translation factors, such as the elongation factors 1 and 2 and the translation initiation factor 5-alpha. These results were validated by 2D Western blot, and possible PTMs caused by CEVd infection were detected. Moreover, an interaction between eukaryotic elongation factor 1 and CEVd was observed by 2D Northwestern. The present study provides new protein-related information on the mechanisms of plant resistance to pathogens. es_ES
dc.description.sponsorship We would like to thank the Proteomic Service of the IBMCP (Instituto de Biologia Molecular y Celular de Plantas, Valencia, Spain) for the technical assistance. We also thank Dr. Alejandro Ferrando (Instituto de Biologia Molecular y Celular de Plantas UPV-CSIC) for critical reading of the manuscript, discussions, and for kindly providing us with the eIF5A antisera. We are also grateful to Dr. Brenda Hunter (University of Arizona) for both eEF1A and eEF2 antiserum. This work was supported by Grant BFU2009-11958 from Direccion General de Programas y Transferencia de Conocimiento, from Spanish Ministry of Science and Innovation. Laura Campos was the recipient of a predoctoral fellowship ACIF/2010/231 from Generalitat Valenciana (Spain). M. Pilar Lopez-Gresa held a postdoctoral fellowship JAEDoc_08_ 00402 from the Consejo Superior de Investigaciones Cientificas (Spain). en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Proteomics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 2D DIGE es_ES
dc.subject Plant stress es_ES
dc.subject Tomato es_ES
dc.subject Translation factors es_ES
dc.subject Viroid es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pmic.201200286
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-11958/ES/Señalizacion Y Respuesta Defensiva De Las Plantas Frente A Patogenos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F231/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//JAEDoc 08 00402/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Lisón Párraga, MP.; Tarraga Herrero, S.; López Gresa, MP.; Sauri Ferrando, A.; Torres Vidal, C.; Campos Beneyto, L.; Belles Albert, JM.... (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. Proteomics. 13(5):833-844. https://doi.org/10.1002/pmic.201200286 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/pmic.201200286 es_ES
dc.description.upvformatpinicio 833 es_ES
dc.description.upvformatpfin 844 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 253922 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243 es_ES
dc.description.references Ding, B., & Itaya, A. (2007). Viroid: A Useful Model for Studying the Basic Principles of Infection and RNA Biology. Molecular Plant-Microbe Interactions, 20(1), 7-20. doi:10.1094/mpmi-20-0007 es_ES
dc.description.references Ding, B., Kwon, M.-O., Hammond, R., & Owens, R. (1997). Cell-to-cell movement of potato spindle tuber viroid. The Plant Journal, 12(4), 931-936. doi:10.1046/j.1365-313x.1997.12040931.x es_ES
dc.description.references Zhu, Y., Green, L., Woo, Y.-M., Owens, R., & Ding, B. (2001). Cellular Basis of Potato Spindle Tuber Viroid Systemic Movement. Virology, 279(1), 69-77. doi:10.1006/viro.2000.0724 es_ES
dc.description.references Qi, Y., Pélissier, T., Itaya, A., Hunt, E., Wassenegger, M., & Ding, B. (2004). Direct Role of a Viroid RNA Motif in Mediating Directional RNA Trafficking across a Specific Cellular Boundary. The Plant Cell, 16(7), 1741-1752. doi:10.1105/tpc.021980 es_ES
dc.description.references Flores, R., Grubb, D., Elleuch, A., Nohales, M.-Á., Delgado, S., & Gago, S. (2011). Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme. RNA Biology, 8(2), 200-206. doi:10.4161/rna.8.2.14238 es_ES
dc.description.references Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927 es_ES
dc.description.references Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7 es_ES
dc.description.references Vera, P., & Conejero, V. (1988). Pathogenesis-Related Proteins of Tomato. Plant Physiology, 87(1), 58-63. doi:10.1104/pp.87.1.58 es_ES
dc.description.references Breijo, F. J. G., Garro, R., & Conejero, V. (1990). C7(P32) and C6(P34) PR proteins induced in tomato leaves by citrus exocortis viroid infection are chitinases. Physiological and Molecular Plant Pathology, 36(3), 249-260. doi:10.1016/0885-5765(90)90029-w es_ES
dc.description.references Domingo, C., Conejero, V., & Vera, P. (1994). Genes encoding acidic and basic class III ?-1,3-glucanases are expressed in tomato plants upon viroid infection. Plant Molecular Biology, 24(5), 725-732. doi:10.1007/bf00029854 es_ES
dc.description.references Bellés, J. M., Granell, A., Durán-vila, N., & Conejero, V. (1989). ACC Synthesis as the Activated Step Responsible for the Rise of Ethylene Production Accompanying Citrus Exocortis Viroid Infection in Tomato Plants. Journal of Phytopathology, 125(3), 198-208. doi:10.1111/j.1439-0434.1989.tb01061.x es_ES
dc.description.references Belles, J. M., Perez-Amador, M. A., Carbonell, J., & Conejero, V. (1993). Correlation between Ornithine Decarboxylase and Putrescine in Tomato Plants Infected by Citrus Exocortis Viroid or Treated with Ethephon. Plant Physiology, 102(3), 933-937. doi:10.1104/pp.102.3.933 es_ES
dc.description.references Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227 es_ES
dc.description.references Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014 es_ES
dc.description.references Tárraga, S., Lisón, P., López-Gresa, M. P., Torres, C., Rodrigo, I., Bellés, J. M., & Conejero, V. (2010). Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. Journal of Experimental Botany, 61(15), 4325-4338. doi:10.1093/jxb/erq234 es_ES
dc.description.references Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8 es_ES
dc.description.references López-Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). Metabolic response of tomato leaves upon different plantâ pathogen interactions. Phytochemical Analysis, 21(1), 89-94. doi:10.1002/pca.1179 es_ES
dc.description.references Eggert, K., & Pawelzik, E. (2011). Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum). PROTEOMICS, 11(5), 972-985. doi:10.1002/pmic.201000322 es_ES
dc.description.references Li, Y., Zhang, Z., Nie, Y., Zhang, L., & Wang, Z. (2012). Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice. PROTEOMICS, 12(14), 2340-2354. doi:10.1002/pmic.201200054 es_ES
dc.description.references Xu, Q.-F., Cheng, W.-S., Li, S.-S., Li, W., Zhang, Z.-X., Xu, Y.-P., … Cai, X.-Z. (2012). Identification of genes required for Cf-dependent hypersensitive cell death by combined proteomic and RNA interfering analyses. Journal of Experimental Botany, 63(7), 2421-2435. doi:10.1093/jxb/err397 es_ES
dc.description.references Castillejo, M. Á., Fernández-Aparicio, M., & Rubiales, D. (2011). Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. Journal of Experimental Botany, 63(1), 107-119. doi:10.1093/jxb/err246 es_ES
dc.description.references Badillo-Vargas, I. E., Rotenberg, D., Schneweis, D. J., Hiromasa, Y., Tomich, J. M., & Whitfield, A. E. (2012). Proteomic Analysis of Frankliniella occidentalis and Differentially Expressed Proteins in Response toTomato Spotted Wilt VirusInfection. Journal of Virology, 86(16), 8793-8809. doi:10.1128/jvi.00285-12 es_ES
dc.description.references Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053 es_ES
dc.description.references Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., … Mann, M. (1996). Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences, 93(25), 14440-14445. doi:10.1073/pnas.93.25.14440 es_ES
dc.description.references Varó, I., Rigos, G., Navarro, J. C., del Ramo, J., Calduch-Giner, J., Hernández, A., … Torreblanca, A. (2010). Effect of ivermectin on the liver of gilthead sea bream Sparus aurata: A proteomic approach. Chemosphere, 80(5), 570-577. doi:10.1016/j.chemosphere.2010.04.030 es_ES
dc.description.references Pauwels, K., Sanchez del Pino, M. M., Feller, G., & Van Gelder, P. (2012). Decoding the Folding of Burkholderia glumae Lipase: Folding Intermediates En Route to Kinetic Stability. PLoS ONE, 7(5), e36999. doi:10.1371/journal.pone.0036999 es_ES
dc.description.references Dube, A., Bisaillon, M., & Perreault, J.-P. (2009). Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid. Journal of Virology, 83(23), 12057-12067. doi:10.1128/jvi.01151-09 es_ES
dc.description.references Rodrigo, I., Vera, P., Frank, R., & Conejero, V. (1991). Identification of the viroid-induced tomato pathogenesis-related (PR) protein P23 as the thaumatin-like tomato protein NP24 associated with osmotic stress. Plant Molecular Biology, 16(5), 931-934. doi:10.1007/bf00015088 es_ES
dc.description.references Tornero, P., Gadea, J., Conejero, V., & Vera, P. (1997). TwoPR-1Genes from Tomato Are Differentially Regulated and Reveal a Novel Mode of Expression for a Pathogenesis-Related Gene During the Hypersensitive Response and Development. Molecular Plant-Microbe Interactions, 10(5), 624-634. doi:10.1094/mpmi.1997.10.5.624 es_ES
dc.description.references Takeda, R., & Ding, B. (2009). Viroid Intercellular Trafficking: RNA Motifs, Cellular Factors and Broad Impacts. Viruses, 1(2), 210-221. doi:10.3390/v1020210 es_ES
dc.description.references Kavroulakis, N., Ntougias, S., Zervakis, G. I., Ehaliotis, C., Haralampidis, K., & Papadopoulou, K. K. (2007). Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. Journal of Experimental Botany, 58(14), 3853-3864. doi:10.1093/jxb/erm230 es_ES
dc.description.references Larson, R. L., Hill, A. L., & Nuñez, A. (2007). Characterization of Protein Changes Associated with Sugar Beet (Beta vulgaris) Resistance and Susceptibility toFusarium oxysporum. Journal of Agricultural and Food Chemistry, 55(19), 7905-7915. doi:10.1021/jf070876q es_ES
dc.description.references Swoboda, I., Hoffmann-Sommergruber, K., O’Riordain, G., Scheiner, O., Heberle-Bors, E., & Vicente, O. (1996). Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiologia Plantarum, 96(3), 433-438. doi:10.1111/j.1399-3054.1996.tb00455.x es_ES
dc.description.references Zhou, X.-J., Lu, S., Xu, Y.-H., Wang, J.-W., & Chen, X.-Y. (2002). A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Science, 162(4), 629-636. doi:10.1016/s0168-9452(02)00002-x es_ES
dc.description.references Park, C.-J., Kim, K.-J., Shin, R., Park, J. M., Shin, Y.-C., & Paek, K.-H. (2003). Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal, 37(2), 186-198. doi:10.1046/j.1365-313x.2003.01951.x es_ES
dc.description.references Chen, Z.-Y., Brown, R. L., Rajasekaran, K., Damann, K. E., & Cleveland, T. E. (2006). Identification of a Maize Kernel Pathogenesis-Related Protein and Evidence for Its Involvement in Resistance toAspergillus flavusInfection and Aflatoxin Production. Phytopathology, 96(1), 87-95. doi:10.1094/phyto-96-0087 es_ES
dc.description.references Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., … Dietrich, R. A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26(4), 403-410. doi:10.1038/82521 es_ES
dc.description.references Lodha, T. D., & Basak, J. (2011). Plant–Pathogen Interactions: What Microarray Tells About It? Molecular Biotechnology, 50(1), 87-97. doi:10.1007/s12033-011-9418-2 es_ES
dc.description.references Carvalho, C. M., Santos, A. A., Pires, S. R., Rocha, C. S., Saraiva, D. I., Machado, J. P. B., … Fontes, E. P. B. (2008). Regulated Nuclear Trafficking of rpL10A Mediated by NIK1 Represents a Defense Strategy of Plant Cells against Virus. PLoS Pathogens, 4(12), e1000247. doi:10.1371/journal.ppat.1000247 es_ES
dc.description.references Fukushi, S., Okada, M., Stahl, J., Kageyama, T., Hoshino, F. B., & Katayama, K. (2001). Ribosomal Protein S5 Interacts with the Internal Ribosomal Entry Site of Hepatitis C Virus. Journal of Biological Chemistry, 276(24), 20824-20826. doi:10.1074/jbc.c100206200 es_ES
dc.description.references Eiras, M., Nohales, M. A., Kitajima, E. W., Flores, R., & Daròs, J. A. (2010). Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 156(3), 529-533. doi:10.1007/s00705-010-0867-x es_ES
dc.description.references Mateyak, M. K., & Kinzy, T. G. (2010). eEF1A: Thinking Outside the Ribosome. Journal of Biological Chemistry, 285(28), 21209-21213. doi:10.1074/jbc.r110.113795 es_ES
dc.description.references Li, Z., Pogany, J., Tupman, S., Esposito, A. M., Kinzy, T. G., & Nagy, P. D. (2010). Translation Elongation Factor 1A Facilitates the Assembly of the Tombusvirus Replicase and Stimulates Minus-Strand Synthesis. PLoS Pathogens, 6(11), e1001175. doi:10.1371/journal.ppat.1001175 es_ES
dc.description.references Yamaji, Y., Sakurai, K., Hamada, K., Komatsu, K., Ozeki, J., Yoshida, A., … Hibi, T. (2009). Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection. Archives of Virology, 155(2), 263-268. doi:10.1007/s00705-009-0571-x es_ES
dc.description.references Hopkins, M. T., Lampi, Y., Wang, T.-W., Liu, Z., & Thompson, J. E. (2008). Eukaryotic Translation Initiation Factor 5A Is Involved in Pathogen-Induced Cell Death and Development of Disease Symptoms in Arabidopsis. Plant Physiology, 148(1), 479-489. doi:10.1104/pp.108.118869 es_ES
dc.description.references Szick-Miranda, K., Jayachandran, S., Tam, A., Werner-Fraczek, J., Williams, A. J., & Bailey-Serres, J. (2003). Evaluation of Translational Control Mechanisms in Response to Oxygen Deprivation in Maize. Russian Journal of Plant Physiology, 50(6), 774-786. doi:10.1023/b:rupp.0000003275.97021.2b es_ES
dc.description.references Castelló, A., Quintas, A., Sánchez, E. G., Sabina, P., Nogal, M., Carrasco, L., & Revilla, Y. (2009). Regulation of Host Translational Machinery by African Swine Fever Virus. PLoS Pathogens, 5(8), e1000562. doi:10.1371/journal.ppat.1000562 es_ES
dc.description.references Sanz, M. Á., Castelló, A., Ventoso, I., Berlanga, J. J., & Carrasco, L. (2009). Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells. PLoS ONE, 4(3), e4772. doi:10.1371/journal.pone.0004772 es_ES
dc.description.references Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. C., & Brierley, I. (2006). A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature, 441(7090), 244-247. doi:10.1038/nature04735 es_ES
dc.description.references Jao, D. L.-E., & Chen, K. Y. (2006). Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. Journal of Cellular Biochemistry, 97(3), 583-598. doi:10.1002/jcb.20658 es_ES
dc.description.references Zanelli, C. F., Maragno, A. L. C., Gregio, A. P. B., Komili, S., Pandolfi, J. R., Mestriner, C. A., … Valentini, S. R. (2006). eIF5A binds to translational machinery components and affects translation in yeast. Biochemical and Biophysical Research Communications, 348(4), 1358-1366. doi:10.1016/j.bbrc.2006.07.195 es_ES
dc.description.references Greganova, E., Altmann, M., & Bütikofer, P. (2011). Unique modifications of translation elongation factors. FEBS Journal, 278(15), 2613-2624. doi:10.1111/j.1742-4658.2011.08199.x es_ES
dc.description.references Gupta, P. K., Liu, S., Batavia, M. P., & Leppla, S. H. (2008). The diphthamide modification on elongation factor-2 renders mammalian cells resistant to ricin. Cellular Microbiology, 10(8), 1687-1694. doi:10.1111/j.1462-5822.2008.01159.x es_ES
dc.description.references Ji, W. T., Wang, L., Lin, R. C., Huang, W. R., & Liu, H. J. (2009). Avian reovirus influences phosphorylation of several factors involved in host protein translation including eukaryotic translation elongation factor 2 (eEF2) in Vero cells. Biochemical and Biophysical Research Communications, 384(3), 301-305. doi:10.1016/j.bbrc.2009.04.116 es_ES
dc.description.references Yamasaki, S., & Anderson, P. (2008). Reprogramming mRNA translation during stress. Current Opinion in Cell Biology, 20(2), 222-226. doi:10.1016/j.ceb.2008.01.013 es_ES
dc.description.references Sano, T., Barba, M., Li, S.-F., & Hadidi, A. (2010). Viroids and RNA silencing: Mechanism, role in viroid pathogenicity and development of viroid-resistant plants. GM Crops, 1(2), 23-29. doi:10.4161/gmcr.1.2.11871 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem