Clark, A. J. (2001). Atom transfer radical cyclisation reactions mediated by copper complexes. Chemical Society Reviews, 31(1), 1-11. doi:10.1039/b107811a
Pattarozzi, M., Ghelfi, F., Roncaglia, F., Giangiordano, V., Davoli, P., & Prati, F. (2009). ‘Ligand-Free-Like’ CuCl-Catalyzed Atom Transfer Radical Cyclization of N-Substituted N-Allyl Polychloroamides to γ-Lactams. Synthesis, 2010(04), 694-700. doi:10.1055/s-0029-1218583
Motoyama, Y., Kamo, K., Yuasa, A., & Nagashima, H. (2010). Catalytic atom-transfer radical cyclization by copper/bipyridine species encapsulated in polysiloxane gel. Chemical Communications, 46(13), 2256. doi:10.1039/b923213c
[+]
Clark, A. J. (2001). Atom transfer radical cyclisation reactions mediated by copper complexes. Chemical Society Reviews, 31(1), 1-11. doi:10.1039/b107811a
Pattarozzi, M., Ghelfi, F., Roncaglia, F., Giangiordano, V., Davoli, P., & Prati, F. (2009). ‘Ligand-Free-Like’ CuCl-Catalyzed Atom Transfer Radical Cyclization of N-Substituted N-Allyl Polychloroamides to γ-Lactams. Synthesis, 2010(04), 694-700. doi:10.1055/s-0029-1218583
Motoyama, Y., Kamo, K., Yuasa, A., & Nagashima, H. (2010). Catalytic atom-transfer radical cyclization by copper/bipyridine species encapsulated in polysiloxane gel. Chemical Communications, 46(13), 2256. doi:10.1039/b923213c
Seigal, B. A., Fajardo, C., & Snapper, M. L. (2005). Tandem Catalysis: Generating Multiple Contiguous Carbon−Carbon Bonds through a Ruthenium-Catalyzed Ring-Closing Metathesis/Kharasch Addition. Journal of the American Chemical Society, 127(46), 16329-16332. doi:10.1021/ja055806j
Edlin, C. D., Faulkner, J., & Quayle, P. (2006). Catalyst economy. Part 2: Sequential metathesis—Kharasch sequences using the Grubbs metathesis catalysts. Tetrahedron Letters, 47(7), 1145-1151. doi:10.1016/j.tetlet.2005.12.018
McGonagle, F. I., Brown, L., Cooke, A., & Sutherland, A. (2010). A three-step tandem process for the synthesis of bicyclic γ-lactams. Organic & Biomolecular Chemistry, 8(15), 3418. doi:10.1039/c004695g
Quirante, J., Escolano, C., Merino, A., & Bonjoch, J. (1998). First Total Synthesis of (±)-Melinonine-E and (±)-Strychnoxanthine Using a Radical Cyclization Process as the Core Ring-Forming Step. The Journal of Organic Chemistry, 63(4), 968-976. doi:10.1021/jo971148c
Vila, X., Quirante, J., Paloma, L., & Bonjoch, J. (2004). Six-membered nitrogen ring formation by radical cyclization of trichloroacetamides with enones. A synthetic entry to cis -perhydroisoquinoline-3,6-diones. Tetrahedron Letters, 45(24), 4661-4664. doi:10.1016/j.tetlet.2004.04.104
Quirante, J., Escolano, C., Massot, M., & Bonjoch, J. (1997). Synthesis of 2-azabicyclo[3.3.1]nonanes by means of (carbamoyl)dichloromethyl radical cyclization. Tetrahedron, 53(4), 1391-1402. doi:10.1016/s0040-4020(96)01051-4
Bonjoch, J., Quirante, J., Escolano, C., & Diaba, F. (1999). A Radical Route to Morphans. Synthesis and Spectroscopic Data of the 2-Azabicyclo[3.3.1]nonane. HETEROCYCLES, 50(2), 731. doi:10.3987/com-98-s(h)69
Quirante, J., Escolano, C., Diaba, F., & Bonjoch, J. (1999). Radical promoted cyclisations of trichloroacetamides with silyl enol ethers and enol acetates: the role of the hydride reagent [tris(trimethylsilyl)silane vs. tributylstannane]. Journal of the Chemical Society, Perkin Transactions 1, (9), 1157-1162. doi:10.1039/a900952c
Quirante, J., Torra, M., Diaba, F., Escolano, C., & Bonjoch, J. (1999). Synthesis of enantiopure 2-azabicyclo[3.3.1]nonanes by a radical ring closure. Tetrahedron: Asymmetry, 10(12), 2399-2410. doi:10.1016/s0957-4166(99)00221-9
Huang, X. L., & Dannenberg, J. J. (1991). Molecular orbital estimation of the activation enthalpies for intramolecular hydrogen transfer as functions of size of the cyclic transition state and carbon-hydrogen-carbon angle. The Journal of Organic Chemistry, 56(18), 5421-5424. doi:10.1021/jo00018a041
Gulea, M., López-Romero, J. M., Fensterbank, L., & Malacria, M. (2000). 1,4-Hydrogen Radical Transfer as a New and Versatile Tool for the Synthesis of Enantiomerically Pure 1,2,3-Triols. Organic Letters, 2(17), 2591-2594. doi:10.1021/ol000133p
Cassayre, J., & Zard, S. Z. (2001). A short synthesis of (−)-dendrobine. Some observations on the nickel mediated radical cyclisation and on the Pauson–Khand reaction. Journal of Organometallic Chemistry, 624(1-2), 316-326. doi:10.1016/s0022-328x(01)00662-3
Orena, M., Cardillo, B., Galeazzi, R., Mobbili, G., & Rossetti, M. (1994). Synthesis and Structural Assignment of Diastereomerically Pure N-Substituted 4-Alkylpyrrolidin-2-ones, Intermediates for the Preparation of 3-Alkylpyrrolidines in Both Enantiomerically Pure Forms. HETEROCYCLES, 38(12), 2663. doi:10.3987/com-94-6881
Ishibashi, H., Kameoka, C., Kodama, K., & Ikeda, M. (1996). Asymmetric radical cyclization leading to β-lactams: Stereoselective synthesis of chiral key intermediates for carbapenem antibiotics PS-5 and thienamycin. Tetrahedron, 52(2), 489-502. doi:10.1016/0040-4020(95)00902-7
Ishibashi, H., Fuke, Y., Yamashita, T., & Ikeda, M. (1996). Radical cyclization of chiral N-(1-cycloalken-1-yl)-α-haloacetamides: Synthesis of optically active bicyclic pyrrolidinones. Tetrahedron: Asymmetry, 7(9), 2531-2538. doi:10.1016/0957-4166(96)00326-6
Ishibashi, H., Kameoka, C., Kodama, K., Kawanami, H., Hamada, M., & Ikeda, M. (1997). Synthesis of a chiral 1β-methylcarbapenem key intermediate using radical cyclization of N-vinylic α-bromo amides. Tetrahedron, 53(28), 9611-9622. doi:10.1016/s0040-4020(97)00645-5
Ikeda, M., Ohtani, S., Sato, T., & Ishibashi, H. (1998). Total Synthesis of (-)-γ-Lycorane Using Diastereoselective 5-Endo-Trig Radical Cyclization of N-Vinylic α-Halo Amides. Synthesis, 1998(12), 1803-1806. doi:10.1055/s-1998-2212
Clark, A. J., De Campo, F., Deeth, R. J., Filik, R. P., Gatard, S., Hunt, N. A., … Wongtap, H. (2000). Atom transfer radical cyclisations of activated and unactivated N-allylhaloacetamides and N-homoallylhaloacetamides using chiral and non-chiral copper complexes. Journal of the Chemical Society, Perkin Transactions 1, (5), 671-680. doi:10.1039/a909666c
Duclos, R. I., & Makriyannis, A. (1992). Syntheses of all four stereoisomers which are conformationally constrained 1,4-dioxanyl analogs of the antineoplastic ether lipid ET-18-OCH3. The Journal of Organic Chemistry, 57(23), 6156-6163. doi:10.1021/jo00049a021
Cardillo, G., Orena, M., Penna, M., Sandri, S., & Tomasini, C. (1991). A new approach to the synthesis of enantiomerically pure 2,3-diaminoacids through chiral imidazolidin-2-ones. Tetrahedron, 47(12-13), 2263-2272. doi:10.1016/s0040-4020(01)96136-8
Cardillo, G., Gentilucci, L., Tomasini, C., & Castejon-Bordas, M. P. V. (1996). Synthesis of enantiomerically pure trans aziridine-2-carboxylates by diastereoselective Gabriel-cromwell reaction. Tetrahedron: Asymmetry, 7(3), 755-762. doi:10.1016/0957-4166(96)00071-7
Yus, M., Foubelo, F., & Falvello, L. R. (1995). Diastereoselective preparation of chiral lithiated allyl amines: Application in EPC-synthesis. Tetrahedron: Asymmetry, 6(8), 2081-2092. doi:10.1016/0957-4166(95)00271-p
Rodríguez, V., Sánchez, M., Quintero, L., & Sartillo-Piscil, F. (2004). The 5-exo-trig radical cyclization reaction under reductive and oxidative conditions in the synthesis of optically pure GABA derivatives. Tetrahedron, 60(48), 10809-10815. doi:10.1016/j.tet.2004.09.053
Karoyan, P., & Chassaing, G. (1997). Asymmetric synthesis of (2S,3S)- and (2S,3R)-3-prolinomethionines: 3-methylsulfanylmethyl-pyrrolidine-2-carboxylic acids. Tetrahedron: Asymmetry, 8(12), 2025-2032. doi:10.1016/s0957-4166(97)00203-6
Ikeda, M., Teranishi, H., Nozaki, K., & Ishibashi, H. (1998). Triethylborane-mediated atom-transfer cyclisation of 2-iodo-N-(prop-2-enyl)acetamides and related compounds. Journal of the Chemical Society, Perkin Transactions 1, (10), 1691-1698. doi:10.1039/a800402a
Ziegler, T. (1991). Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chemical Reviews, 91(5), 651-667. doi:10.1021/cr00005a001
Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785
Tomasi, J., & Persico, M. (1994). Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews, 94(7), 2027-2094. doi:10.1021/cr00031a013
Cancès, E., Mennucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics, 107(8), 3032-3041. doi:10.1063/1.474659
Cossi, M., Barone, V., Cammi, R., & Tomasi, J. (1996). Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chemical Physics Letters, 255(4-6), 327-335. doi:10.1016/0009-2614(96)00349-1
Barone, V., Cossi, M., & Tomasi, J. (1998). Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 19(4), 404-417. doi:10.1002/(sici)1096-987x(199803)19:4<404::aid-jcc3>3.0.co;2-w
[-]