- -

Translocation versus cyclisation in radicals derived from N-3-alkenyl trichloroacetamides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Translocation versus cyclisation in radicals derived from N-3-alkenyl trichloroacetamides

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marín García, Mª Luisa es_ES
dc.contributor.author Zaragoza, Ramon J. es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Diaba, Faiza es_ES
dc.contributor.author Bonjoch, Josep es_ES
dc.date.accessioned 2016-03-16T10:23:27Z
dc.date.available 2016-03-16T10:23:27Z
dc.date.issued 2011
dc.identifier.issn 1477-0520
dc.identifier.uri http://hdl.handle.net/10251/61922
dc.description.abstract Under radical reaction conditions, two different and competitive reaction pathways were observed for N-(alpha-methylbenzyl)trichloroacetamides with a N-3-cyclohexenyl substituent: 1,4-hydrogen translocation and radical addition to a double bond. However, for radicals with an acyclic alkenyl side chain, the direct cyclisation process was exclusively observed. The dichotomy between translocation and direct radical cyclisation in these substrates has been theoretically studied using density functional theory (DFT) methods at the B3LYP/6-31G** computational level. es_ES
dc.description.sponsorship This research was supported by the Ministry of Education and Science (Spain)-FEDER through projects CTQ2007-61338/BQU, CTQ2009-11027/BQU and CTQ2009-13699 and Universidad Politecnica de Valencia (2005-PPI-06-05). en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Organic and Biomolecular Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject POLARIZABLE CONTINUUM MODEL es_ES
dc.subject COPPER-COMPLEXES es_ES
dc.subject AMIDES es_ES
dc.subject TOOL es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Translocation versus cyclisation in radicals derived from N-3-alkenyl trichloroacetamides es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c0ob01228a
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CTQ2007-61338/ES/CARBO- Y AZABICICLOS ENANTIOPUROS MEDIANTE ORGANOCATALISIS Y PROCESOS CATALIZADOS POR CU(I). SINTESIS TOTAL DE ALCALOIDES Y TERPENOIDES DE ELEVADA COMPLEJIDAD ESTRUCTURAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//2005-PPI-06-05/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-11027/ES/Estudios de reactividad en química orgánica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-13699/ES/CTQ2009-13699/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Marín García, ML.; Zaragoza, RJ.; Miranda Alonso, MÁ.; Diaba, F.; Bonjoch, J. (2011). Translocation versus cyclisation in radicals derived from N-3-alkenyl trichloroacetamides. Organic and Biomolecular Chemistry. 9(9):3180-3187. https://doi.org/10.1039/c0ob01228a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c0ob01228a es_ES
dc.description.upvformatpinicio 3180 es_ES
dc.description.upvformatpfin 3187 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 192957 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Clark, A. J. (2001). Atom transfer radical cyclisation reactions mediated by copper complexes. Chemical Society Reviews, 31(1), 1-11. doi:10.1039/b107811a es_ES
dc.description.references Pattarozzi, M., Ghelfi, F., Roncaglia, F., Giangiordano, V., Davoli, P., & Prati, F. (2009). ‘Ligand-Free-Like’ CuCl-Catalyzed Atom Transfer Radical Cyclization of N-Substituted N-Allyl Polychloroamides to γ-Lactams. Synthesis, 2010(04), 694-700. doi:10.1055/s-0029-1218583 es_ES
dc.description.references Motoyama, Y., Kamo, K., Yuasa, A., & Nagashima, H. (2010). Catalytic atom-transfer radical cyclization by copper/bipyridine species encapsulated in polysiloxane gel. Chemical Communications, 46(13), 2256. doi:10.1039/b923213c es_ES
dc.description.references Seigal, B. A., Fajardo, C., & Snapper, M. L. (2005). Tandem Catalysis:  Generating Multiple Contiguous Carbon−Carbon Bonds through a Ruthenium-Catalyzed Ring-Closing Metathesis/Kharasch Addition. Journal of the American Chemical Society, 127(46), 16329-16332. doi:10.1021/ja055806j es_ES
dc.description.references Edlin, C. D., Faulkner, J., & Quayle, P. (2006). Catalyst economy. Part 2: Sequential metathesis—Kharasch sequences using the Grubbs metathesis catalysts. Tetrahedron Letters, 47(7), 1145-1151. doi:10.1016/j.tetlet.2005.12.018 es_ES
dc.description.references McGonagle, F. I., Brown, L., Cooke, A., & Sutherland, A. (2010). A three-step tandem process for the synthesis of bicyclic γ-lactams. Organic & Biomolecular Chemistry, 8(15), 3418. doi:10.1039/c004695g es_ES
dc.description.references Quirante, J., Escolano, C., Merino, A., & Bonjoch, J. (1998). First Total Synthesis of (±)-Melinonine-E and (±)-Strychnoxanthine Using a Radical Cyclization Process as the Core Ring-Forming Step. The Journal of Organic Chemistry, 63(4), 968-976. doi:10.1021/jo971148c es_ES
dc.description.references Vila, X., Quirante, J., Paloma, L., & Bonjoch, J. (2004). Six-membered nitrogen ring formation by radical cyclization of trichloroacetamides with enones. A synthetic entry to cis -perhydroisoquinoline-3,6-diones. Tetrahedron Letters, 45(24), 4661-4664. doi:10.1016/j.tetlet.2004.04.104 es_ES
dc.description.references Quirante, J., Escolano, C., Massot, M., & Bonjoch, J. (1997). Synthesis of 2-azabicyclo[3.3.1]nonanes by means of (carbamoyl)dichloromethyl radical cyclization. Tetrahedron, 53(4), 1391-1402. doi:10.1016/s0040-4020(96)01051-4 es_ES
dc.description.references Bonjoch, J., Quirante, J., Escolano, C., & Diaba, F. (1999). A Radical Route to Morphans. Synthesis and Spectroscopic Data of the 2-Azabicyclo[3.3.1]nonane. HETEROCYCLES, 50(2), 731. doi:10.3987/com-98-s(h)69 es_ES
dc.description.references Quirante, J., Escolano, C., Diaba, F., & Bonjoch, J. (1999). Radical promoted cyclisations of trichloroacetamides with silyl enol ethers and enol acetates: the role of the hydride reagent [tris(trimethylsilyl)silane vs. tributylstannane]. Journal of the Chemical Society, Perkin Transactions 1, (9), 1157-1162. doi:10.1039/a900952c es_ES
dc.description.references Quirante, J., Torra, M., Diaba, F., Escolano, C., & Bonjoch, J. (1999). Synthesis of enantiopure 2-azabicyclo[3.3.1]nonanes by a radical ring closure. Tetrahedron: Asymmetry, 10(12), 2399-2410. doi:10.1016/s0957-4166(99)00221-9 es_ES
dc.description.references Huang, X. L., & Dannenberg, J. J. (1991). Molecular orbital estimation of the activation enthalpies for intramolecular hydrogen transfer as functions of size of the cyclic transition state and carbon-hydrogen-carbon angle. The Journal of Organic Chemistry, 56(18), 5421-5424. doi:10.1021/jo00018a041 es_ES
dc.description.references Gulea, M., López-Romero, J. M., Fensterbank, L., & Malacria, M. (2000). 1,4-Hydrogen Radical Transfer as a New and Versatile Tool for the Synthesis of Enantiomerically Pure 1,2,3-Triols. Organic Letters, 2(17), 2591-2594. doi:10.1021/ol000133p es_ES
dc.description.references Cassayre, J., & Zard, S. Z. (2001). A short synthesis of (−)-dendrobine. Some observations on the nickel mediated radical cyclisation and on the Pauson–Khand reaction. Journal of Organometallic Chemistry, 624(1-2), 316-326. doi:10.1016/s0022-328x(01)00662-3 es_ES
dc.description.references Orena, M., Cardillo, B., Galeazzi, R., Mobbili, G., & Rossetti, M. (1994). Synthesis and Structural Assignment of Diastereomerically Pure N-Substituted 4-Alkylpyrrolidin-2-ones, Intermediates for the Preparation of 3-Alkylpyrrolidines in Both Enantiomerically Pure Forms. HETEROCYCLES, 38(12), 2663. doi:10.3987/com-94-6881 es_ES
dc.description.references Ishibashi, H., Kameoka, C., Kodama, K., & Ikeda, M. (1996). Asymmetric radical cyclization leading to β-lactams: Stereoselective synthesis of chiral key intermediates for carbapenem antibiotics PS-5 and thienamycin. Tetrahedron, 52(2), 489-502. doi:10.1016/0040-4020(95)00902-7 es_ES
dc.description.references Ishibashi, H., Fuke, Y., Yamashita, T., & Ikeda, M. (1996). Radical cyclization of chiral N-(1-cycloalken-1-yl)-α-haloacetamides: Synthesis of optically active bicyclic pyrrolidinones. Tetrahedron: Asymmetry, 7(9), 2531-2538. doi:10.1016/0957-4166(96)00326-6 es_ES
dc.description.references Ishibashi, H., Kameoka, C., Kodama, K., Kawanami, H., Hamada, M., & Ikeda, M. (1997). Synthesis of a chiral 1β-methylcarbapenem key intermediate using radical cyclization of N-vinylic α-bromo amides. Tetrahedron, 53(28), 9611-9622. doi:10.1016/s0040-4020(97)00645-5 es_ES
dc.description.references Ikeda, M., Ohtani, S., Sato, T., & Ishibashi, H. (1998). Total Synthesis of (-)-γ-Lycorane Using Diastereoselective 5-Endo-Trig Radical Cyclization of N-Vinylic α-Halo Amides. Synthesis, 1998(12), 1803-1806. doi:10.1055/s-1998-2212 es_ES
dc.description.references Clark, A. J., De Campo, F., Deeth, R. J., Filik, R. P., Gatard, S., Hunt, N. A., … Wongtap, H. (2000). Atom transfer radical cyclisations of activated and unactivated N-allylhaloacetamides and N-homoallylhaloacetamides using chiral and non-chiral copper complexes. Journal of the Chemical Society, Perkin Transactions 1, (5), 671-680. doi:10.1039/a909666c es_ES
dc.description.references Duclos, R. I., & Makriyannis, A. (1992). Syntheses of all four stereoisomers which are conformationally constrained 1,4-dioxanyl analogs of the antineoplastic ether lipid ET-18-OCH3. The Journal of Organic Chemistry, 57(23), 6156-6163. doi:10.1021/jo00049a021 es_ES
dc.description.references Cardillo, G., Orena, M., Penna, M., Sandri, S., & Tomasini, C. (1991). A new approach to the synthesis of enantiomerically pure 2,3-diaminoacids through chiral imidazolidin-2-ones. Tetrahedron, 47(12-13), 2263-2272. doi:10.1016/s0040-4020(01)96136-8 es_ES
dc.description.references Cardillo, G., Gentilucci, L., Tomasini, C., & Castejon-Bordas, M. P. V. (1996). Synthesis of enantiomerically pure trans aziridine-2-carboxylates by diastereoselective Gabriel-cromwell reaction. Tetrahedron: Asymmetry, 7(3), 755-762. doi:10.1016/0957-4166(96)00071-7 es_ES
dc.description.references Yus, M., Foubelo, F., & Falvello, L. R. (1995). Diastereoselective preparation of chiral lithiated allyl amines: Application in EPC-synthesis. Tetrahedron: Asymmetry, 6(8), 2081-2092. doi:10.1016/0957-4166(95)00271-p es_ES
dc.description.references Rodríguez, V., Sánchez, M., Quintero, L., & Sartillo-Piscil, F. (2004). The 5-exo-trig radical cyclization reaction under reductive and oxidative conditions in the synthesis of optically pure GABA derivatives. Tetrahedron, 60(48), 10809-10815. doi:10.1016/j.tet.2004.09.053 es_ES
dc.description.references Karoyan, P., & Chassaing, G. (1997). Asymmetric synthesis of (2S,3S)- and (2S,3R)-3-prolinomethionines: 3-methylsulfanylmethyl-pyrrolidine-2-carboxylic acids. Tetrahedron: Asymmetry, 8(12), 2025-2032. doi:10.1016/s0957-4166(97)00203-6 es_ES
dc.description.references Ikeda, M., Teranishi, H., Nozaki, K., & Ishibashi, H. (1998). Triethylborane-mediated atom-transfer cyclisation of 2-iodo-N-(prop-2-enyl)acetamides and related compounds. Journal of the Chemical Society, Perkin Transactions 1, (10), 1691-1698. doi:10.1039/a800402a es_ES
dc.description.references Ziegler, T. (1991). Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chemical Reviews, 91(5), 651-667. doi:10.1021/cr00005a001 es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 es_ES
dc.description.references Tomasi, J., & Persico, M. (1994). Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews, 94(7), 2027-2094. doi:10.1021/cr00031a013 es_ES
dc.description.references Cancès, E., Mennucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics, 107(8), 3032-3041. doi:10.1063/1.474659 es_ES
dc.description.references Cossi, M., Barone, V., Cammi, R., & Tomasi, J. (1996). Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chemical Physics Letters, 255(4-6), 327-335. doi:10.1016/0009-2614(96)00349-1 es_ES
dc.description.references Barone, V., Cossi, M., & Tomasi, J. (1998). Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 19(4), 404-417. doi:10.1002/(sici)1096-987x(199803)19:4<404::aid-jcc3>3.0.co;2-w es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem