Mostrar el registro sencillo del ítem
dc.contributor.author | Marín García, Mª Luisa | es_ES |
dc.contributor.author | Zaragoza, Ramon J. | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Diaba, Faiza | es_ES |
dc.contributor.author | Bonjoch, Josep | es_ES |
dc.date.accessioned | 2016-03-16T10:23:27Z | |
dc.date.available | 2016-03-16T10:23:27Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1477-0520 | |
dc.identifier.uri | http://hdl.handle.net/10251/61922 | |
dc.description.abstract | Under radical reaction conditions, two different and competitive reaction pathways were observed for N-(alpha-methylbenzyl)trichloroacetamides with a N-3-cyclohexenyl substituent: 1,4-hydrogen translocation and radical addition to a double bond. However, for radicals with an acyclic alkenyl side chain, the direct cyclisation process was exclusively observed. The dichotomy between translocation and direct radical cyclisation in these substrates has been theoretically studied using density functional theory (DFT) methods at the B3LYP/6-31G** computational level. | es_ES |
dc.description.sponsorship | This research was supported by the Ministry of Education and Science (Spain)-FEDER through projects CTQ2007-61338/BQU, CTQ2009-11027/BQU and CTQ2009-13699 and Universidad Politecnica de Valencia (2005-PPI-06-05). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Organic and Biomolecular Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | POLARIZABLE CONTINUUM MODEL | es_ES |
dc.subject | COPPER-COMPLEXES | es_ES |
dc.subject | AMIDES | es_ES |
dc.subject | TOOL | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Translocation versus cyclisation in radicals derived from N-3-alkenyl trichloroacetamides | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c0ob01228a | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CTQ2007-61338/ES/CARBO- Y AZABICICLOS ENANTIOPUROS MEDIANTE ORGANOCATALISIS Y PROCESOS CATALIZADOS POR CU(I). SINTESIS TOTAL DE ALCALOIDES Y TERPENOIDES DE ELEVADA COMPLEJIDAD ESTRUCTURAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//2005-PPI-06-05/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2009-11027/ES/Estudios de reactividad en química orgánica/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2009-13699/ES/CTQ2009-13699/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Marín García, ML.; Zaragoza, RJ.; Miranda Alonso, MÁ.; Diaba, F.; Bonjoch, J. (2011). Translocation versus cyclisation in radicals derived from N-3-alkenyl trichloroacetamides. Organic and Biomolecular Chemistry. 9(9):3180-3187. https://doi.org/10.1039/c0ob01228a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c0ob01228a | es_ES |
dc.description.upvformatpinicio | 3180 | es_ES |
dc.description.upvformatpfin | 3187 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 192957 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Clark, A. J. (2001). Atom transfer radical cyclisation reactions mediated by copper complexes. Chemical Society Reviews, 31(1), 1-11. doi:10.1039/b107811a | es_ES |
dc.description.references | Pattarozzi, M., Ghelfi, F., Roncaglia, F., Giangiordano, V., Davoli, P., & Prati, F. (2009). ‘Ligand-Free-Like’ CuCl-Catalyzed Atom Transfer Radical Cyclization of N-Substituted N-Allyl Polychloroamides to γ-Lactams. Synthesis, 2010(04), 694-700. doi:10.1055/s-0029-1218583 | es_ES |
dc.description.references | Motoyama, Y., Kamo, K., Yuasa, A., & Nagashima, H. (2010). Catalytic atom-transfer radical cyclization by copper/bipyridine species encapsulated in polysiloxane gel. Chemical Communications, 46(13), 2256. doi:10.1039/b923213c | es_ES |
dc.description.references | Seigal, B. A., Fajardo, C., & Snapper, M. L. (2005). Tandem Catalysis: Generating Multiple Contiguous Carbon−Carbon Bonds through a Ruthenium-Catalyzed Ring-Closing Metathesis/Kharasch Addition. Journal of the American Chemical Society, 127(46), 16329-16332. doi:10.1021/ja055806j | es_ES |
dc.description.references | Edlin, C. D., Faulkner, J., & Quayle, P. (2006). Catalyst economy. Part 2: Sequential metathesis—Kharasch sequences using the Grubbs metathesis catalysts. Tetrahedron Letters, 47(7), 1145-1151. doi:10.1016/j.tetlet.2005.12.018 | es_ES |
dc.description.references | McGonagle, F. I., Brown, L., Cooke, A., & Sutherland, A. (2010). A three-step tandem process for the synthesis of bicyclic γ-lactams. Organic & Biomolecular Chemistry, 8(15), 3418. doi:10.1039/c004695g | es_ES |
dc.description.references | Quirante, J., Escolano, C., Merino, A., & Bonjoch, J. (1998). First Total Synthesis of (±)-Melinonine-E and (±)-Strychnoxanthine Using a Radical Cyclization Process as the Core Ring-Forming Step. The Journal of Organic Chemistry, 63(4), 968-976. doi:10.1021/jo971148c | es_ES |
dc.description.references | Vila, X., Quirante, J., Paloma, L., & Bonjoch, J. (2004). Six-membered nitrogen ring formation by radical cyclization of trichloroacetamides with enones. A synthetic entry to cis -perhydroisoquinoline-3,6-diones. Tetrahedron Letters, 45(24), 4661-4664. doi:10.1016/j.tetlet.2004.04.104 | es_ES |
dc.description.references | Quirante, J., Escolano, C., Massot, M., & Bonjoch, J. (1997). Synthesis of 2-azabicyclo[3.3.1]nonanes by means of (carbamoyl)dichloromethyl radical cyclization. Tetrahedron, 53(4), 1391-1402. doi:10.1016/s0040-4020(96)01051-4 | es_ES |
dc.description.references | Bonjoch, J., Quirante, J., Escolano, C., & Diaba, F. (1999). A Radical Route to Morphans. Synthesis and Spectroscopic Data of the 2-Azabicyclo[3.3.1]nonane. HETEROCYCLES, 50(2), 731. doi:10.3987/com-98-s(h)69 | es_ES |
dc.description.references | Quirante, J., Escolano, C., Diaba, F., & Bonjoch, J. (1999). Radical promoted cyclisations of trichloroacetamides with silyl enol ethers and enol acetates: the role of the hydride reagent [tris(trimethylsilyl)silane vs. tributylstannane]. Journal of the Chemical Society, Perkin Transactions 1, (9), 1157-1162. doi:10.1039/a900952c | es_ES |
dc.description.references | Quirante, J., Torra, M., Diaba, F., Escolano, C., & Bonjoch, J. (1999). Synthesis of enantiopure 2-azabicyclo[3.3.1]nonanes by a radical ring closure. Tetrahedron: Asymmetry, 10(12), 2399-2410. doi:10.1016/s0957-4166(99)00221-9 | es_ES |
dc.description.references | Huang, X. L., & Dannenberg, J. J. (1991). Molecular orbital estimation of the activation enthalpies for intramolecular hydrogen transfer as functions of size of the cyclic transition state and carbon-hydrogen-carbon angle. The Journal of Organic Chemistry, 56(18), 5421-5424. doi:10.1021/jo00018a041 | es_ES |
dc.description.references | Gulea, M., López-Romero, J. M., Fensterbank, L., & Malacria, M. (2000). 1,4-Hydrogen Radical Transfer as a New and Versatile Tool for the Synthesis of Enantiomerically Pure 1,2,3-Triols. Organic Letters, 2(17), 2591-2594. doi:10.1021/ol000133p | es_ES |
dc.description.references | Cassayre, J., & Zard, S. Z. (2001). A short synthesis of (−)-dendrobine. Some observations on the nickel mediated radical cyclisation and on the Pauson–Khand reaction. Journal of Organometallic Chemistry, 624(1-2), 316-326. doi:10.1016/s0022-328x(01)00662-3 | es_ES |
dc.description.references | Orena, M., Cardillo, B., Galeazzi, R., Mobbili, G., & Rossetti, M. (1994). Synthesis and Structural Assignment of Diastereomerically Pure N-Substituted 4-Alkylpyrrolidin-2-ones, Intermediates for the Preparation of 3-Alkylpyrrolidines in Both Enantiomerically Pure Forms. HETEROCYCLES, 38(12), 2663. doi:10.3987/com-94-6881 | es_ES |
dc.description.references | Ishibashi, H., Kameoka, C., Kodama, K., & Ikeda, M. (1996). Asymmetric radical cyclization leading to β-lactams: Stereoselective synthesis of chiral key intermediates for carbapenem antibiotics PS-5 and thienamycin. Tetrahedron, 52(2), 489-502. doi:10.1016/0040-4020(95)00902-7 | es_ES |
dc.description.references | Ishibashi, H., Fuke, Y., Yamashita, T., & Ikeda, M. (1996). Radical cyclization of chiral N-(1-cycloalken-1-yl)-α-haloacetamides: Synthesis of optically active bicyclic pyrrolidinones. Tetrahedron: Asymmetry, 7(9), 2531-2538. doi:10.1016/0957-4166(96)00326-6 | es_ES |
dc.description.references | Ishibashi, H., Kameoka, C., Kodama, K., Kawanami, H., Hamada, M., & Ikeda, M. (1997). Synthesis of a chiral 1β-methylcarbapenem key intermediate using radical cyclization of N-vinylic α-bromo amides. Tetrahedron, 53(28), 9611-9622. doi:10.1016/s0040-4020(97)00645-5 | es_ES |
dc.description.references | Ikeda, M., Ohtani, S., Sato, T., & Ishibashi, H. (1998). Total Synthesis of (-)-γ-Lycorane Using Diastereoselective 5-Endo-Trig Radical Cyclization of N-Vinylic α-Halo Amides. Synthesis, 1998(12), 1803-1806. doi:10.1055/s-1998-2212 | es_ES |
dc.description.references | Clark, A. J., De Campo, F., Deeth, R. J., Filik, R. P., Gatard, S., Hunt, N. A., … Wongtap, H. (2000). Atom transfer radical cyclisations of activated and unactivated N-allylhaloacetamides and N-homoallylhaloacetamides using chiral and non-chiral copper complexes. Journal of the Chemical Society, Perkin Transactions 1, (5), 671-680. doi:10.1039/a909666c | es_ES |
dc.description.references | Duclos, R. I., & Makriyannis, A. (1992). Syntheses of all four stereoisomers which are conformationally constrained 1,4-dioxanyl analogs of the antineoplastic ether lipid ET-18-OCH3. The Journal of Organic Chemistry, 57(23), 6156-6163. doi:10.1021/jo00049a021 | es_ES |
dc.description.references | Cardillo, G., Orena, M., Penna, M., Sandri, S., & Tomasini, C. (1991). A new approach to the synthesis of enantiomerically pure 2,3-diaminoacids through chiral imidazolidin-2-ones. Tetrahedron, 47(12-13), 2263-2272. doi:10.1016/s0040-4020(01)96136-8 | es_ES |
dc.description.references | Cardillo, G., Gentilucci, L., Tomasini, C., & Castejon-Bordas, M. P. V. (1996). Synthesis of enantiomerically pure trans aziridine-2-carboxylates by diastereoselective Gabriel-cromwell reaction. Tetrahedron: Asymmetry, 7(3), 755-762. doi:10.1016/0957-4166(96)00071-7 | es_ES |
dc.description.references | Yus, M., Foubelo, F., & Falvello, L. R. (1995). Diastereoselective preparation of chiral lithiated allyl amines: Application in EPC-synthesis. Tetrahedron: Asymmetry, 6(8), 2081-2092. doi:10.1016/0957-4166(95)00271-p | es_ES |
dc.description.references | Rodríguez, V., Sánchez, M., Quintero, L., & Sartillo-Piscil, F. (2004). The 5-exo-trig radical cyclization reaction under reductive and oxidative conditions in the synthesis of optically pure GABA derivatives. Tetrahedron, 60(48), 10809-10815. doi:10.1016/j.tet.2004.09.053 | es_ES |
dc.description.references | Karoyan, P., & Chassaing, G. (1997). Asymmetric synthesis of (2S,3S)- and (2S,3R)-3-prolinomethionines: 3-methylsulfanylmethyl-pyrrolidine-2-carboxylic acids. Tetrahedron: Asymmetry, 8(12), 2025-2032. doi:10.1016/s0957-4166(97)00203-6 | es_ES |
dc.description.references | Ikeda, M., Teranishi, H., Nozaki, K., & Ishibashi, H. (1998). Triethylborane-mediated atom-transfer cyclisation of 2-iodo-N-(prop-2-enyl)acetamides and related compounds. Journal of the Chemical Society, Perkin Transactions 1, (10), 1691-1698. doi:10.1039/a800402a | es_ES |
dc.description.references | Ziegler, T. (1991). Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chemical Reviews, 91(5), 651-667. doi:10.1021/cr00005a001 | es_ES |
dc.description.references | Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 | es_ES |
dc.description.references | Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 | es_ES |
dc.description.references | Tomasi, J., & Persico, M. (1994). Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews, 94(7), 2027-2094. doi:10.1021/cr00031a013 | es_ES |
dc.description.references | Cancès, E., Mennucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics, 107(8), 3032-3041. doi:10.1063/1.474659 | es_ES |
dc.description.references | Cossi, M., Barone, V., Cammi, R., & Tomasi, J. (1996). Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chemical Physics Letters, 255(4-6), 327-335. doi:10.1016/0009-2614(96)00349-1 | es_ES |
dc.description.references | Barone, V., Cossi, M., & Tomasi, J. (1998). Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 19(4), 404-417. doi:10.1002/(sici)1096-987x(199803)19:4<404::aid-jcc3>3.0.co;2-w | es_ES |