- -

Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool

Show full item record

Quintás, G.; Portillo Poblador, N.; García Cañaveras, JC.; Castell, JV.; Ferrer, A.; Lahoz, A. (2012). Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool. Metabolomics. 8(1):86-98. https://doi.org/10.1007/s11306-011-0292-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62036

Files in this item

Item Metadata

Title: Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool
Author: Quintás, Guillermo Portillo Poblador, Nuria García Cañaveras, Juan Carlos Castell, José Vicente Ferrer, Alberto Lahoz, Agustín
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
An MS-based metabolomics strategy including variable selection and PLSDA analysis has been assessed as a tool to discriminate between non-steatotic and steatotic human liver profiles. Different chemometric approaches for ...[+]
Subjects: Mass spectrometry , Metabolomics , PLSDA and steatosis , Bile acid , Biological marker , Glutathione , Lysophospholipid , Accuracy , Adult , Article , Chemometric analysis , Computer program , Controlled study , Discriminant analysis , Disease marker , External validity , Female , Human , Human tissue , Male , Metabolite , Nonalcoholic fatty liver , Partial least squares discriminant analysis , Principal component analysis , Reproducibility , Signal noise ratio , Standardization , Time of flight mass spectrometry , Ultra performance liquid chromatography , Validation process
Copyrigths: Cerrado
Source:
Metabolomics. (issn: 1573-3882 ) (eissn: 1573-3890 )
DOI: 10.1007/s11306-011-0292-5
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s11306-011-0292-5
Project ID:
info:eu-repo/grantAgreement/GVA//AP-193%2F10/
info:eu-repo/grantAgreement/MICINN//CP08%2F00125/ES/CP08%2F00125/
Description: The online version of this article (doi:10.​1007/​s11306-011-0292-5) contains supplementary material, which is available to authorized users.
Thanks:
This work has been supported by Conselleria de Sanitat (Regional Valencian Ministry of Health) contract (AP-193/10). A. L is grateful for a Miguel Servet contract (CP08/00125) from the Spanish Ministry of Science and ...[+]
Type: Artículo

References

Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

Barr, J., Vazquez-Chantada, M., Alonso, C., Perez-Cormenzana, M., Mayo, R., Galan, A., et al. (2010). Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. Journal of Proteome Research, 9, 4501–4512.

Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Analytical Chemistry, 78, 567–574. [+]
Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

Barr, J., Vazquez-Chantada, M., Alonso, C., Perez-Cormenzana, M., Mayo, R., Galan, A., et al. (2010). Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. Journal of Proteome Research, 9, 4501–4512.

Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Analytical Chemistry, 78, 567–574.

Brereton, R. G. (2009). Chemometrics for pattern recognition. Chichester: John Wiley & Sons.

Cavill, R., Keun, H. C., Holmes, E., Lindon, J. C., Nicholson, J. K., & Ebbels, T. M. D. (2009). Genetic algorithms for simultaneous variable and sample selection in metabonomics. Bioinformatics, 25, 112–118.

Cheung, O., & Sanyal, A. J. (2009). Recent advances in nonalcoholic fatty liver disease. Current Opinion in Gastroenterology, 25, 230–237.

Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78, 103–112.

Cortes, M., Pareja, E., Castell, J. V., Moya, A., Mir, J., & Lahoz, A. (2010). Exploring mass spectrometry suitability to examine human liver graft metabonomic profiles. Transplantation Proceedings, 42, 2953–2958.

den Boer, M., Voshol, P. J., Kuipers, F., Havekes, L. M., & Romijn, J. A. (2004). Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 644–649.

Dowman, J. K., Tomlinson, J. W., & Newsome, P. N. (2010). Pathogenesis of non-alcoholic fatty liver disease. Quarterly Journal of Medicine, 103, 71–83.

Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and the cross-validation. American Statistician, 37, 36–48.

Eriksson, L., Trygg, J., & Wold, S. (2008). CV-ANOVA for significance testing of PLS and OPLS (R) models. Journal of Chemometrics, 22, 594–600.

Esbensen, K. H., & Geladi, P. (2010). Principles of proper validation: use and abuse of re-sampling for validation. Journal of Chemometrics, 24, 168–187.

FDA (2001) Guidance for industry: bioanalytical method validation, In: US Department of Health and Human Services, Food and Drug Administration, Bethesa.

Filzmoser, P., Liebmann, B., & Varmuza, K. (2009). Repeated double cross validation. Journal of Chemometrics, 23, 160–171.

Gomez-Lechon, M. J., Donato, M. T., Martinez-Romero, A., Jimenez, N., Castell, J. V., & O’Connor, J. E. (2007). A human hepatocellular in vitro model to investigate steatosis. Chemico Biological Interactions, 165, 106–116.

Han, M. S., Park, S. Y., Shinzawa, K., Kim, S., Chung, K. W., Lee, J. H., et al. (2008). Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. Journal of Lipid Research, 49, 84–97.

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry and Ion Physics, 45, 703–714.

Hoskuldsson, A. (2001). Variable and subset selection in PLS regression. Chemometrics and Intelligent Laboratory Systems, 55, 23–38.

Isabelle, G., & Andre, E. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

Johansson, E., Svante, W., & Sjoedin, K. (1984). Minimizing effects of closure on analytical data. Analytical Chemistry, 56, 1685–1688.

Kalhan, S.C., Guo, L., Edmison, J., Dasarathy, S., McCullough, A.J., Hanson, R.W., & Milburn, M. (2010) Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. doi: 10.1016/j.metabol.2010.03.006

Lavine, B., & Workman, J. (2010). Chemometrics. Analytical Chemistry, 82, 4699–4711.

Li, X., Yang, S. B., Qiu, Y. P., Zhao, T., Chen, T. L., Su, M. M., et al. (2010). Urinary metabolomics as a potentially novel diagnostic and stratification tool for knee osteoarthritis. Metabolomics, 6, 109–118.

Lindgren, F., Hansen, B., Karcher, W., Sjöström, M., & Eriksson, L. (1996). Model validation by permutation tests: applications to variable selection. Journal of Chemometrics, 10, 521–532.

Matthew, B., & William, R. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189.

Pasikanti, K. K., Esuvaranathan, K., Ho, P. C., Mahendran, R., Kamaraj, R., Wu, Q. H., et al. (2010). Noninvasive urinary metabonomic diagnosis of human bladder cancer. Journal of Proteome Research, 9, 2988–2995.

Peters, S., van Velzen, E., & Janssen, H. G. (2009). Parameter selection for peak alignment in chromatographic sample profiling: objective quality indicators and use of control samples. Analytical and Bioanalytical Chemistry, 394, 1273–1281.

Pierna, J. A. F., Abbas, O., Baeten, V., & Dardenne, P. (2009). A backward variable selection method for pls regression (BVSPLS). Analytica Chimica Acta, 642, 89–93.

Puri, P., Wiest, M. M., Cheung, O., Mirshahi, F., Sargeant, C., Min, H. K., et al. (2009). The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology, 50, 1827–1838.

Sysi-Aho, M., Vehtari, A., Velagapudi, V. R., Westerbacka, J., Yetukuri, L., Bergholm, R., et al. (2007). Exploring the lipoprotein composition using Bayesian regression on serum lipidomic profiles. Bioinformatics, 23, I519–I528.

van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7, 142.

Vinaixa, M., Rodriguez, M. A., Rull, A., Beltran, R., Blade, C., Brezmes, J., et al. (2010). Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease. Journal of Proteome Research, 9, 2527–2538.

Want, E. J., Wilson, I. D., Gika, H., Theodoridis, G., Plumb, R. S., Shockcor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 5, 1005–1018.

Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., van Velzen, E. J. J., et al. (2008a). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89.

Westerhuis, J. A., van Velzen, E. J. J., Hoefsloot, H. C. J., & Smilde, A. K. (2008b). Discriminant Q(2) (DQ(2)) for improved discrimination in PLSDA models. Metabolomics, 4, 293–296.

Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

Wongravee, K., Heinrich, N., Holmboe, M., Schaefer, M. L., Reed, R. R., Trevejo, J., et al. (2009). Variable selection using iterative reformulation of training set models for discrimination of samples: application to gas chromatography/mass spectrometry of mouse urinary metabolites. Analytical Chemistry, 81, 5204–5217.

Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372, 204–212.

Yang, L., Xiong, A., He, Y., Wang, Z., Wang, C., Li, W., et al. (2008). Bile acids metabolomic study on the CCl4- and alpha-naphthylisothiocyanate-induced animal models: quantitative analysis of 22 bile acids by ultraperformance liquid chromatography-mass spectrometry. Chemical Research in Toxicology, 21, 2280–2288.

Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81, 1357–1364.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record