- -

Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quintás, Guillermo es_ES
dc.contributor.author Portillo Poblador, Nuria es_ES
dc.contributor.author García Cañaveras, Juan Carlos es_ES
dc.contributor.author Castell, José Vicente es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.contributor.author Lahoz, Agustín es_ES
dc.date.accessioned 2016-03-23T15:35:21Z
dc.date.available 2016-03-23T15:35:21Z
dc.date.issued 2012-02
dc.identifier.issn 1573-3882
dc.identifier.uri http://hdl.handle.net/10251/62036
dc.description The online version of this article (doi:10.​1007/​s11306-011-0292-5) contains supplementary material, which is available to authorized users. es_ES
dc.description.abstract An MS-based metabolomics strategy including variable selection and PLSDA analysis has been assessed as a tool to discriminate between non-steatotic and steatotic human liver profiles. Different chemometric approaches for uninformative variable elimination were performed by using two of the most common software packages employed in the field of metabolomics (i.e., MATLAB and SIMCA-P). The first considered approach was performed with MATLAB where the PLS regression vector coefficient values were used to classify variables as informative or not. The second approach was run under SIMCA-P, where variable selection was performed according to both the PLS regression vector coefficients and VIP scores. PLSDA models performance features, such as model validation, variable selection criteria, and potential biomarker output, were assessed for comparison purposes. One interesting finding is that variable selection improved the classification predictiveness of all the models by facilitating metabolite identification and providing enhanced insight into the metabolic information acquired by the UPLC-MS method. The results prove that the proposed strategy is a potentially straightforward approach to improve model performance. Among others, GSH, lysophospholipids and bile acids were found to be the most important altered metabolites in the metabolomic profiles studied. However, further research and more in-depth biochemical interpretations are needed to unambiguously propose them as disease biomarkers. es_ES
dc.description.sponsorship This work has been supported by Conselleria de Sanitat (Regional Valencian Ministry of Health) contract (AP-193/10). A. L is grateful for a Miguel Servet contract (CP08/00125) from the Spanish Ministry of Science and Innovation/Instituto de Salud Carlos III. J.C G-C is grateful for a pre-doctoral contract from the val I + d program of the Conselleria d'Educacio (Regional Valencian Ministry of Education). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Metabolomics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mass spectrometry es_ES
dc.subject Metabolomics es_ES
dc.subject PLSDA and steatosis es_ES
dc.subject Bile acid es_ES
dc.subject Biological marker es_ES
dc.subject Glutathione es_ES
dc.subject Lysophospholipid es_ES
dc.subject Accuracy es_ES
dc.subject Adult es_ES
dc.subject Article es_ES
dc.subject Chemometric analysis es_ES
dc.subject Computer program es_ES
dc.subject Controlled study es_ES
dc.subject Discriminant analysis es_ES
dc.subject Disease marker es_ES
dc.subject External validity es_ES
dc.subject Female es_ES
dc.subject Human es_ES
dc.subject Human tissue es_ES
dc.subject Male es_ES
dc.subject Metabolite es_ES
dc.subject Nonalcoholic fatty liver es_ES
dc.subject Partial least squares discriminant analysis es_ES
dc.subject Principal component analysis es_ES
dc.subject Reproducibility es_ES
dc.subject Signal noise ratio es_ES
dc.subject Standardization es_ES
dc.subject Time of flight mass spectrometry es_ES
dc.subject Ultra performance liquid chromatography es_ES
dc.subject Validation process es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11306-011-0292-5
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AP-193%2F10/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CP08%2F00125/ES/CP08%2F00125/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Quintás, G.; Portillo Poblador, N.; García Cañaveras, JC.; Castell, JV.; Ferrer, A.; Lahoz, A. (2012). Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool. Metabolomics. 8(1):86-98. https://doi.org/10.1007/s11306-011-0292-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11306-011-0292-5 es_ES
dc.description.upvformatpinicio 86 es_ES
dc.description.upvformatpfin 98 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 202369 es_ES
dc.identifier.eissn 1573-3890
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173. es_ES
dc.description.references Barr, J., Vazquez-Chantada, M., Alonso, C., Perez-Cormenzana, M., Mayo, R., Galan, A., et al. (2010). Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. Journal of Proteome Research, 9, 4501–4512. es_ES
dc.description.references Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Analytical Chemistry, 78, 567–574. es_ES
dc.description.references Brereton, R. G. (2009). Chemometrics for pattern recognition. Chichester: John Wiley & Sons. es_ES
dc.description.references Cavill, R., Keun, H. C., Holmes, E., Lindon, J. C., Nicholson, J. K., & Ebbels, T. M. D. (2009). Genetic algorithms for simultaneous variable and sample selection in metabonomics. Bioinformatics, 25, 112–118. es_ES
dc.description.references Cheung, O., & Sanyal, A. J. (2009). Recent advances in nonalcoholic fatty liver disease. Current Opinion in Gastroenterology, 25, 230–237. es_ES
dc.description.references Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78, 103–112. es_ES
dc.description.references Cortes, M., Pareja, E., Castell, J. V., Moya, A., Mir, J., & Lahoz, A. (2010). Exploring mass spectrometry suitability to examine human liver graft metabonomic profiles. Transplantation Proceedings, 42, 2953–2958. es_ES
dc.description.references den Boer, M., Voshol, P. J., Kuipers, F., Havekes, L. M., & Romijn, J. A. (2004). Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 644–649. es_ES
dc.description.references Dowman, J. K., Tomlinson, J. W., & Newsome, P. N. (2010). Pathogenesis of non-alcoholic fatty liver disease. Quarterly Journal of Medicine, 103, 71–83. es_ES
dc.description.references Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and the cross-validation. American Statistician, 37, 36–48. es_ES
dc.description.references Eriksson, L., Trygg, J., & Wold, S. (2008). CV-ANOVA for significance testing of PLS and OPLS (R) models. Journal of Chemometrics, 22, 594–600. es_ES
dc.description.references Esbensen, K. H., & Geladi, P. (2010). Principles of proper validation: use and abuse of re-sampling for validation. Journal of Chemometrics, 24, 168–187. es_ES
dc.description.references FDA (2001) Guidance for industry: bioanalytical method validation, In: US Department of Health and Human Services, Food and Drug Administration, Bethesa. es_ES
dc.description.references Filzmoser, P., Liebmann, B., & Varmuza, K. (2009). Repeated double cross validation. Journal of Chemometrics, 23, 160–171. es_ES
dc.description.references Gomez-Lechon, M. J., Donato, M. T., Martinez-Romero, A., Jimenez, N., Castell, J. V., & O’Connor, J. E. (2007). A human hepatocellular in vitro model to investigate steatosis. Chemico Biological Interactions, 165, 106–116. es_ES
dc.description.references Han, M. S., Park, S. Y., Shinzawa, K., Kim, S., Chung, K. W., Lee, J. H., et al. (2008). Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. Journal of Lipid Research, 49, 84–97. es_ES
dc.description.references Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry and Ion Physics, 45, 703–714. es_ES
dc.description.references Hoskuldsson, A. (2001). Variable and subset selection in PLS regression. Chemometrics and Intelligent Laboratory Systems, 55, 23–38. es_ES
dc.description.references Isabelle, G., & Andre, E. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182. es_ES
dc.description.references Johansson, E., Svante, W., & Sjoedin, K. (1984). Minimizing effects of closure on analytical data. Analytical Chemistry, 56, 1685–1688. es_ES
dc.description.references Kalhan, S.C., Guo, L., Edmison, J., Dasarathy, S., McCullough, A.J., Hanson, R.W., & Milburn, M. (2010) Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. doi: 10.1016/j.metabol.2010.03.006 es_ES
dc.description.references Lavine, B., & Workman, J. (2010). Chemometrics. Analytical Chemistry, 82, 4699–4711. es_ES
dc.description.references Li, X., Yang, S. B., Qiu, Y. P., Zhao, T., Chen, T. L., Su, M. M., et al. (2010). Urinary metabolomics as a potentially novel diagnostic and stratification tool for knee osteoarthritis. Metabolomics, 6, 109–118. es_ES
dc.description.references Lindgren, F., Hansen, B., Karcher, W., Sjöström, M., & Eriksson, L. (1996). Model validation by permutation tests: applications to variable selection. Journal of Chemometrics, 10, 521–532. es_ES
dc.description.references Matthew, B., & William, R. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173. es_ES
dc.description.references Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189. es_ES
dc.description.references Pasikanti, K. K., Esuvaranathan, K., Ho, P. C., Mahendran, R., Kamaraj, R., Wu, Q. H., et al. (2010). Noninvasive urinary metabonomic diagnosis of human bladder cancer. Journal of Proteome Research, 9, 2988–2995. es_ES
dc.description.references Peters, S., van Velzen, E., & Janssen, H. G. (2009). Parameter selection for peak alignment in chromatographic sample profiling: objective quality indicators and use of control samples. Analytical and Bioanalytical Chemistry, 394, 1273–1281. es_ES
dc.description.references Pierna, J. A. F., Abbas, O., Baeten, V., & Dardenne, P. (2009). A backward variable selection method for pls regression (BVSPLS). Analytica Chimica Acta, 642, 89–93. es_ES
dc.description.references Puri, P., Wiest, M. M., Cheung, O., Mirshahi, F., Sargeant, C., Min, H. K., et al. (2009). The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology, 50, 1827–1838. es_ES
dc.description.references Sysi-Aho, M., Vehtari, A., Velagapudi, V. R., Westerbacka, J., Yetukuri, L., Bergholm, R., et al. (2007). Exploring the lipoprotein composition using Bayesian regression on serum lipidomic profiles. Bioinformatics, 23, I519–I528. es_ES
dc.description.references van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7, 142. es_ES
dc.description.references Vinaixa, M., Rodriguez, M. A., Rull, A., Beltran, R., Blade, C., Brezmes, J., et al. (2010). Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease. Journal of Proteome Research, 9, 2527–2538. es_ES
dc.description.references Want, E. J., Wilson, I. D., Gika, H., Theodoridis, G., Plumb, R. S., Shockcor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 5, 1005–1018. es_ES
dc.description.references Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., van Velzen, E. J. J., et al. (2008a). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89. es_ES
dc.description.references Westerhuis, J. A., van Velzen, E. J. J., Hoefsloot, H. C. J., & Smilde, A. K. (2008b). Discriminant Q(2) (DQ(2)) for improved discrimination in PLSDA models. Metabolomics, 4, 293–296. es_ES
dc.description.references Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610. es_ES
dc.description.references Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130. es_ES
dc.description.references Wongravee, K., Heinrich, N., Holmboe, M., Schaefer, M. L., Reed, R. R., Trevejo, J., et al. (2009). Variable selection using iterative reformulation of training set models for discrimination of samples: application to gas chromatography/mass spectrometry of mouse urinary metabolites. Analytical Chemistry, 81, 5204–5217. es_ES
dc.description.references Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372, 204–212. es_ES
dc.description.references Yang, L., Xiong, A., He, Y., Wang, Z., Wang, C., Li, W., et al. (2008). Bile acids metabolomic study on the CCl4- and alpha-naphthylisothiocyanate-induced animal models: quantitative analysis of 22 bile acids by ultraperformance liquid chromatography-mass spectrometry. Chemical Research in Toxicology, 21, 2280–2288. es_ES
dc.description.references Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81, 1357–1364. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem