- -

Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems

Show full item record

Hernandez, L.; Baladron, C.; Aguiar, JM.; Calavia, L.; Carro, B.; Sanchez-Esguevillas, A.; Perez, F.... (2014). Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems. Energies. 7(3):1576-1598. doi:10.3390/en7031576

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62379

Files in this item

Item Metadata

Title: Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems
Author: Hernandez, Luis Baladron, Carlos Aguiar, Javier M. Calavia, Lorena Carro, Belen Sanchez-Esguevillas, Antonio Perez, Francisco Fernandez, Angel Lloret Mauri, Jaime
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Issued date:
Abstract:
The new paradigms and latest developments in the Electrical Grid are based on the introduction of distributed intelligence at several stages of its physical layer, giving birth to concepts such as Smart Grids, Virtual Power ...[+]
Subjects: Microgrid , Short-term load forecasting , Multi-layer perceptron , Artificial neural network
Copyrigths: Reconocimiento (by)
Source:
Energies. (issn: 1996-1073 )
DOI: 10.3390/en7031576
Publisher:
MDPI
Publisher version: http://dx.doi.org/10.3390/en7031576
Project ID:
INNPACTO agreement of the Ministry of Economy and Competitiveness of the Government of Spain [IPT-2012-0611-120000]
Thanks:
Our gratitude to CEDER-CIEMAT for providing the data to the presented work. In the same way, we want to convey our gratitude to the project partners MIRED-CON (IPT-2012-0611-120000), funded by the INNPACTO agreement of the ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record