Mostrar el registro sencillo del ítem
dc.contributor.author | Hernandez, Luis | es_ES |
dc.contributor.author | Baladron, Carlos | es_ES |
dc.contributor.author | Aguiar, Javier M. | es_ES |
dc.contributor.author | Calavia, Lorena | es_ES |
dc.contributor.author | Carro, Belen | es_ES |
dc.contributor.author | Sanchez-Esguevillas, Antonio | es_ES |
dc.contributor.author | Perez, Francisco | es_ES |
dc.contributor.author | Fernandez, Angel | es_ES |
dc.contributor.author | Lloret Mauri, Jaime | es_ES |
dc.date.accessioned | 2016-04-08T15:04:08Z | |
dc.date.available | 2016-04-08T15:04:08Z | |
dc.date.issued | 2014-03 | |
dc.identifier.issn | 1996-1073 | |
dc.identifier.uri | http://hdl.handle.net/10251/62379 | |
dc.description.abstract | The new paradigms and latest developments in the Electrical Grid are based on the introduction of distributed intelligence at several stages of its physical layer, giving birth to concepts such as Smart Grids, Virtual Power Plants, microgrids, Smart Buildings and Smart Environments. Distributed Generation (DG) is a philosophy in which energy is no longer produced exclusively in huge centralized plants, but also in smaller premises which take advantage of local conditions in order to minimize transmission losses and optimize production and consumption. This represents a new opportunity for renewable energy, because small elements such as solar panels and wind turbines are expected to be scattered along the grid, feeding local installations or selling energy to the grid depending on their local generation/consumption conditions. The introduction of these highly dynamic elements will lead to a substantial change in the curves of demanded energy. The aim of this paper is to apply Short-Term Load Forecasting (STLF) in microgrid environments with curves and similar behaviours, using two different data sets: the first one packing electricity consumption information during four years and six months in a microgrid along with calendar data, while the second one will be just four months of the previous parameters along with the solar radiation from the site. For the first set of data different STLF models will be discussed, studying the effect of each variable, in order to identify the best one. That model will be employed with the second set of data, in order to make a comparison with a new model that takes into account the solar radiation, since the photovoltaic installations of the microgrid will cause the power demand to fluctuate depending on the solar radiation. | es_ES |
dc.description.sponsorship | Our gratitude to CEDER-CIEMAT for providing the data to the presented work. In the same way, we want to convey our gratitude to the project partners MIRED-CON (IPT-2012-0611-120000), funded by the INNPACTO agreement of the Ministry of Economy and Competitiveness of the Government of Spain. Finally, a special mention to the help of the students Fatih Selim Bayraktar and Guniz Betul Yasar of Gazi University (Turkey), and Cristina Gil Valverde of UNED (Spain). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Microgrid | es_ES |
dc.subject | Short-term load forecasting | es_ES |
dc.subject | Multi-layer perceptron | es_ES |
dc.subject | Artificial neural network | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en7031576 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IPT-2012-0611-120000/ES/MICROGENERACIÓN%2FMINIGENARACIÓN RENOVABLE DISTRIBUIDA Y SU CONTROL. MIRED-CON/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Hernandez, L.; Baladron, C.; Aguiar, JM.; Calavia, L.; Carro, B.; Sanchez-Esguevillas, A.; Perez, F.... (2014). Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems. Energies. 7(3):1576-1598. https://doi.org/10.3390/en7031576 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/en7031576 | es_ES |
dc.description.upvformatpinicio | 1576 | es_ES |
dc.description.upvformatpfin | 1598 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 287263 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Spencer, H. H., & Hazen, H. L. (1925). Artificial Representation of Power Systems. Transactions of the American Institute of Electrical Engineers, XLIV, 72-79. doi:10.1109/t-aiee.1925.5061095 | es_ES |
dc.description.references | Hamilton, R. F. (1944). The Summation or Load Curves. Transactions of the American Institute of Electrical Engineers, 63(10), 729-735. doi:10.1109/t-aiee.1944.5058782 | es_ES |
dc.description.references | Davies, M. (1959). The relationship between weather and electricity demand. Proceedings of the IEE Part C: Monographs, 106(9), 27. doi:10.1049/pi-c.1959.0007 | es_ES |
dc.description.references | Matthewman, P. D., & Nicholson, H. (1968). Techniques for load prediction in the electricity-supply industry. Proceedings of the Institution of Electrical Engineers, 115(10), 1451. doi:10.1049/piee.1968.0258 | es_ES |
dc.description.references | Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems, 16(1), 44-55. doi:10.1109/59.910780 | es_ES |
dc.description.references | García-Ascanio, C., & Maté, C. (2010). Electric power demand forecasting using interval time series: A comparison between VAR and iMLP. Energy Policy, 38(2), 715-725. doi:10.1016/j.enpol.2009.10.007 | es_ES |
dc.description.references | Marin, F. J., Garcia-Lagos, F., Joya, G., & Sandoval, F. (2002). Global model for short-term load forecasting using artificial neural networks. IEE Proceedings - Generation, Transmission and Distribution, 149(2), 121. doi:10.1049/ip-gtd:20020224 | es_ES |
dc.description.references | Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies, 5(12), 5215-5228. doi:10.3390/en5125215 | es_ES |
dc.description.references | Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571 | es_ES |
dc.description.references | Hagan, M. T., & Behr, S. M. (1987). The Time Series Approach to Short Term Load Forecasting. IEEE Transactions on Power Systems, 2(3), 785-791. doi:10.1109/tpwrs.1987.4335210 | es_ES |
dc.description.references | Hernandez, L., Baladrón, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies, 6(3), 1385-1408. doi:10.3390/en6031385 | es_ES |
dc.description.references | Kim, H., & Thottan, M. (2011). A two-stage market model for microgrid power transactions via aggregators. Bell Labs Technical Journal, 16(3), 101-107. doi:10.1002/bltj.20524 | es_ES |
dc.description.references | Zhou, L., Rodrigues, J., & Oliveira, L. (2012). QoE-driven power scheduling in smart grid: architecture, strategy, and methodology. IEEE Communications Magazine, 50(5), 136-141. doi:10.1109/mcom.2012.6194394 | es_ES |
dc.description.references | Liang Zhou, & Rodrigues, J. J. P. C. (2013). Service-oriented middleware for smart grid: Principle, infrastructure, and application. IEEE Communications Magazine, 51(1), 84-89. doi:10.1109/mcom.2013.6400443 | es_ES |
dc.description.references | Wille-Haussmann, B., Erge, T., & Wittwer, C. (2010). Decentralised optimisation of cogeneration in virtual power plants. Solar Energy, 84(4), 604-611. doi:10.1016/j.solener.2009.10.009 | es_ES |
dc.description.references | Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446 | es_ES |
dc.description.references | Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169 | es_ES |
dc.description.references | Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803-1832. doi:10.1063/1.1144830 | es_ES |