- -

Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernandez, Luis es_ES
dc.contributor.author Baladron, Carlos es_ES
dc.contributor.author Aguiar, Javier M. es_ES
dc.contributor.author Calavia, Lorena es_ES
dc.contributor.author Carro, Belen es_ES
dc.contributor.author Sanchez-Esguevillas, Antonio es_ES
dc.contributor.author Perez, Francisco es_ES
dc.contributor.author Fernandez, Angel es_ES
dc.contributor.author Lloret Mauri, Jaime es_ES
dc.date.accessioned 2016-04-08T15:04:08Z
dc.date.available 2016-04-08T15:04:08Z
dc.date.issued 2014-03
dc.identifier.issn 1996-1073
dc.identifier.uri http://hdl.handle.net/10251/62379
dc.description.abstract The new paradigms and latest developments in the Electrical Grid are based on the introduction of distributed intelligence at several stages of its physical layer, giving birth to concepts such as Smart Grids, Virtual Power Plants, microgrids, Smart Buildings and Smart Environments. Distributed Generation (DG) is a philosophy in which energy is no longer produced exclusively in huge centralized plants, but also in smaller premises which take advantage of local conditions in order to minimize transmission losses and optimize production and consumption. This represents a new opportunity for renewable energy, because small elements such as solar panels and wind turbines are expected to be scattered along the grid, feeding local installations or selling energy to the grid depending on their local generation/consumption conditions. The introduction of these highly dynamic elements will lead to a substantial change in the curves of demanded energy. The aim of this paper is to apply Short-Term Load Forecasting (STLF) in microgrid environments with curves and similar behaviours, using two different data sets: the first one packing electricity consumption information during four years and six months in a microgrid along with calendar data, while the second one will be just four months of the previous parameters along with the solar radiation from the site. For the first set of data different STLF models will be discussed, studying the effect of each variable, in order to identify the best one. That model will be employed with the second set of data, in order to make a comparison with a new model that takes into account the solar radiation, since the photovoltaic installations of the microgrid will cause the power demand to fluctuate depending on the solar radiation. es_ES
dc.description.sponsorship Our gratitude to CEDER-CIEMAT for providing the data to the presented work. In the same way, we want to convey our gratitude to the project partners MIRED-CON (IPT-2012-0611-120000), funded by the INNPACTO agreement of the Ministry of Economy and Competitiveness of the Government of Spain. Finally, a special mention to the help of the students Fatih Selim Bayraktar and Guniz Betul Yasar of Gazi University (Turkey), and Cristina Gil Valverde of UNED (Spain). en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Microgrid es_ES
dc.subject Short-term load forecasting es_ES
dc.subject Multi-layer perceptron es_ES
dc.subject Artificial neural network es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en7031576
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IPT-2012-0611-120000/ES/MICROGENERACIÓN%2FMINIGENARACIÓN RENOVABLE DISTRIBUIDA Y SU CONTROL. MIRED-CON/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Hernandez, L.; Baladron, C.; Aguiar, JM.; Calavia, L.; Carro, B.; Sanchez-Esguevillas, A.; Perez, F.... (2014). Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems. Energies. 7(3):1576-1598. https://doi.org/10.3390/en7031576 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/en7031576 es_ES
dc.description.upvformatpinicio 1576 es_ES
dc.description.upvformatpfin 1598 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 287263 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Spencer, H. H., & Hazen, H. L. (1925). Artificial Representation of Power Systems. Transactions of the American Institute of Electrical Engineers, XLIV, 72-79. doi:10.1109/t-aiee.1925.5061095 es_ES
dc.description.references Hamilton, R. F. (1944). The Summation or Load Curves. Transactions of the American Institute of Electrical Engineers, 63(10), 729-735. doi:10.1109/t-aiee.1944.5058782 es_ES
dc.description.references Davies, M. (1959). The relationship between weather and electricity demand. Proceedings of the IEE Part C: Monographs, 106(9), 27. doi:10.1049/pi-c.1959.0007 es_ES
dc.description.references Matthewman, P. D., & Nicholson, H. (1968). Techniques for load prediction in the electricity-supply industry. Proceedings of the Institution of Electrical Engineers, 115(10), 1451. doi:10.1049/piee.1968.0258 es_ES
dc.description.references Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems, 16(1), 44-55. doi:10.1109/59.910780 es_ES
dc.description.references García-Ascanio, C., & Maté, C. (2010). Electric power demand forecasting using interval time series: A comparison between VAR and iMLP. Energy Policy, 38(2), 715-725. doi:10.1016/j.enpol.2009.10.007 es_ES
dc.description.references Marin, F. J., Garcia-Lagos, F., Joya, G., & Sandoval, F. (2002). Global model for short-term load forecasting using artificial neural networks. IEE Proceedings - Generation, Transmission and Distribution, 149(2), 121. doi:10.1049/ip-gtd:20020224 es_ES
dc.description.references Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies, 5(12), 5215-5228. doi:10.3390/en5125215 es_ES
dc.description.references Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571 es_ES
dc.description.references Hagan, M. T., & Behr, S. M. (1987). The Time Series Approach to Short Term Load Forecasting. IEEE Transactions on Power Systems, 2(3), 785-791. doi:10.1109/tpwrs.1987.4335210 es_ES
dc.description.references Hernandez, L., Baladrón, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies, 6(3), 1385-1408. doi:10.3390/en6031385 es_ES
dc.description.references Kim, H., & Thottan, M. (2011). A two-stage market model for microgrid power transactions via aggregators. Bell Labs Technical Journal, 16(3), 101-107. doi:10.1002/bltj.20524 es_ES
dc.description.references Zhou, L., Rodrigues, J., & Oliveira, L. (2012). QoE-driven power scheduling in smart grid: architecture, strategy, and methodology. IEEE Communications Magazine, 50(5), 136-141. doi:10.1109/mcom.2012.6194394 es_ES
dc.description.references Liang Zhou, & Rodrigues, J. J. P. C. (2013). Service-oriented middleware for smart grid: Principle, infrastructure, and application. IEEE Communications Magazine, 51(1), 84-89. doi:10.1109/mcom.2013.6400443 es_ES
dc.description.references Wille-Haussmann, B., Erge, T., & Wittwer, C. (2010). Decentralised optimisation of cogeneration in virtual power plants. Solar Energy, 84(4), 604-611. doi:10.1016/j.solener.2009.10.009 es_ES
dc.description.references Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446 es_ES
dc.description.references Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169 es_ES
dc.description.references Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803-1832. doi:10.1063/1.1144830 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem