- -

Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems

Mostrar el registro completo del ítem

Hernandez, L.; Baladron, C.; Aguiar, JM.; Calavia, L.; Carro, B.; Sanchez-Esguevillas, A.; Perez, F.... (2014). Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems. Energies. 7(3):1576-1598. https://doi.org/10.3390/en7031576

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62379

Ficheros en el ítem

Metadatos del ítem

Título: Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems
Autor: Hernandez, Luis Baladron, Carlos Aguiar, Javier M. Calavia, Lorena Carro, Belen Sanchez-Esguevillas, Antonio Perez, Francisco Fernandez, Angel Lloret Mauri, Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
The new paradigms and latest developments in the Electrical Grid are based on the introduction of distributed intelligence at several stages of its physical layer, giving birth to concepts such as Smart Grids, Virtual Power ...[+]
Palabras clave: Microgrid , Short-term load forecasting , Multi-layer perceptron , Artificial neural network
Derechos de uso: Reconocimiento (by)
Fuente:
Energies. (issn: 1996-1073 )
DOI: 10.3390/en7031576
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/en7031576
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//IPT-2012-0611-120000/ES/MICROGENERACIÓN%2FMINIGENARACIÓN RENOVABLE DISTRIBUIDA Y SU CONTROL. MIRED-CON/
Agradecimientos:
Our gratitude to CEDER-CIEMAT for providing the data to the presented work. In the same way, we want to convey our gratitude to the project partners MIRED-CON (IPT-2012-0611-120000), funded by the INNPACTO agreement of the ...[+]
Tipo: Artículo

References

Spencer, H. H., & Hazen, H. L. (1925). Artificial Representation of Power Systems. Transactions of the American Institute of Electrical Engineers, XLIV, 72-79. doi:10.1109/t-aiee.1925.5061095

Hamilton, R. F. (1944). The Summation or Load Curves. Transactions of the American Institute of Electrical Engineers, 63(10), 729-735. doi:10.1109/t-aiee.1944.5058782

Davies, M. (1959). The relationship between weather and electricity demand. Proceedings of the IEE Part C: Monographs, 106(9), 27. doi:10.1049/pi-c.1959.0007 [+]
Spencer, H. H., & Hazen, H. L. (1925). Artificial Representation of Power Systems. Transactions of the American Institute of Electrical Engineers, XLIV, 72-79. doi:10.1109/t-aiee.1925.5061095

Hamilton, R. F. (1944). The Summation or Load Curves. Transactions of the American Institute of Electrical Engineers, 63(10), 729-735. doi:10.1109/t-aiee.1944.5058782

Davies, M. (1959). The relationship between weather and electricity demand. Proceedings of the IEE Part C: Monographs, 106(9), 27. doi:10.1049/pi-c.1959.0007

Matthewman, P. D., & Nicholson, H. (1968). Techniques for load prediction in the electricity-supply industry. Proceedings of the Institution of Electrical Engineers, 115(10), 1451. doi:10.1049/piee.1968.0258

Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems, 16(1), 44-55. doi:10.1109/59.910780

García-Ascanio, C., & Maté, C. (2010). Electric power demand forecasting using interval time series: A comparison between VAR and iMLP. Energy Policy, 38(2), 715-725. doi:10.1016/j.enpol.2009.10.007

Marin, F. J., Garcia-Lagos, F., Joya, G., & Sandoval, F. (2002). Global model for short-term load forecasting using artificial neural networks. IEE Proceedings - Generation, Transmission and Distribution, 149(2), 121. doi:10.1049/ip-gtd:20020224

Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies, 5(12), 5215-5228. doi:10.3390/en5125215

Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571

Hagan, M. T., & Behr, S. M. (1987). The Time Series Approach to Short Term Load Forecasting. IEEE Transactions on Power Systems, 2(3), 785-791. doi:10.1109/tpwrs.1987.4335210

Hernandez, L., Baladrón, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies, 6(3), 1385-1408. doi:10.3390/en6031385

Kim, H., & Thottan, M. (2011). A two-stage market model for microgrid power transactions via aggregators. Bell Labs Technical Journal, 16(3), 101-107. doi:10.1002/bltj.20524

Zhou, L., Rodrigues, J., & Oliveira, L. (2012). QoE-driven power scheduling in smart grid: architecture, strategy, and methodology. IEEE Communications Magazine, 50(5), 136-141. doi:10.1109/mcom.2012.6194394

Liang Zhou, & Rodrigues, J. J. P. C. (2013). Service-oriented middleware for smart grid: Principle, infrastructure, and application. IEEE Communications Magazine, 51(1), 84-89. doi:10.1109/mcom.2013.6400443

Wille-Haussmann, B., Erge, T., & Wittwer, C. (2010). Decentralised optimisation of cogeneration in virtual power plants. Solar Energy, 84(4), 604-611. doi:10.1016/j.solener.2009.10.009

Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446

Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169

Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803-1832. doi:10.1063/1.1144830

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem