Mostrar el registro sencillo del ítem
dc.contributor.author | Almenar, Pedro | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2016-04-14T15:11:03Z | |
dc.date.available | 2016-04-14T15:11:03Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/62576 | |
dc.description | Copyright © 2013 Pedro Almenar and Lucas Jódar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | es_ES |
dc.description.abstract | This paper presents a method to determine whether the second-order linear differential equation y(n) + q(x)y = 0 is either disfocal or nondisfocal in a fixed interval. The method is based on the recursive application of a linear operator to certain functions and yields upper and lower bounds for the distances between a zero and its adjacent critical points, which will be shown to converge to the exact values of such distances as the recursivity index grows. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministry of Science and Innovation Project DPI2010-C02-01. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Inequality | es_ES |
dc.subject | Oscillation | es_ES |
dc.subject | Lyapunov | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/987976 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20891-C02-01/ES/MODELIZACION Y METODOS NUMERICOS, ALEATORIOS Y DETERMINISTAS, PARA EL FILTRADO DE PARTICULAS DIESEL EN MOTORES DE COMBUSTION INTERNA SOBREALIMENTADOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Almenar, P.; Jódar Sánchez, LA. (2013). Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations. Abstract and Applied Analysis. 2013:1-11. doi:10.1155/2013/987976 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2013/987976 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.relation.senia | 255832 | es_ES |
dc.identifier.eissn | 1687-0409 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Kwong, M. K. (1981). On Lyapunov’s inequality for disfocality. Journal of Mathematical Analysis and Applications, 83(2), 486-494. doi:10.1016/0022-247x(81)90137-2 | es_ES |
dc.description.references | Kwong, M. K. (1999). Integral Inequalities for Second-Order Linear Oscillation. Mathematical Inequalities & Applications, (1), 55-71. doi:10.7153/mia-02-06 | es_ES |
dc.description.references | Harris, B. . (1990). On an inequality of Lyapunov for disfocality. Journal of Mathematical Analysis and Applications, 146(2), 495-500. doi:10.1016/0022-247x(90)90319-b | es_ES |
dc.description.references | Brown, R. C., & Hinton, D. B. (1997). Proceedings of the American Mathematical Society, 125(04), 1123-1130. doi:10.1090/s0002-9939-97-03907-5 | es_ES |
dc.description.references | Tipler, F. J. (1978). General relativity and conjugate ordinary differential equations. Journal of Differential Equations, 30(2), 165-174. doi:10.1016/0022-0396(78)90012-8 | es_ES |
dc.description.references | Došlý, O. (1993). Conjugacy Criteria for Second Order Differential Equations. Rocky Mountain Journal of Mathematics, 23(3), 849-861. doi:10.1216/rmjm/1181072527 | es_ES |
dc.description.references | Moore, R. (1955). The behavior of solutions of a linear differential equation of second order. Pacific Journal of Mathematics, 5(1), 125-145. doi:10.2140/pjm.1955.5.125 | es_ES |
dc.description.references | Almenar, P., & Jódar, L. (2012). An upper bound for the distance between a zero and a critical point of a solution of a second order linear differential equation. Computers & Mathematics with Applications, 63(1), 310-317. doi:10.1016/j.camwa.2011.11.023 | es_ES |
dc.description.references | Almenar, P., & Jódar, L. (2013). The Distribution of Zeroes and Critical Points of Solutions of a Second Order Half-Linear Differential Equation. Abstract and Applied Analysis, 2013, 1-6. doi:10.1155/2013/147192 | es_ES |
dc.description.references | Bellman, R. (1943). The stability of solutions of linear differential equations. Duke Mathematical Journal, 10(4), 643-647. doi:10.1215/s0012-7094-43-01059-2 | es_ES |