- -

Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Almenar, Pedro es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2016-04-14T15:11:03Z
dc.date.available 2016-04-14T15:11:03Z
dc.date.issued 2013
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/62576
dc.description Copyright © 2013 Pedro Almenar and Lucas Jódar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. es_ES
dc.description.abstract This paper presents a method to determine whether the second-order linear differential equation y(n) + q(x)y = 0 is either disfocal or nondisfocal in a fixed interval. The method is based on the recursive application of a linear operator to certain functions and yields upper and lower bounds for the distances between a zero and its adjacent critical points, which will be shown to converge to the exact values of such distances as the recursivity index grows. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministry of Science and Innovation Project DPI2010-C02-01. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Inequality es_ES
dc.subject Oscillation es_ES
dc.subject Lyapunov es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/987976
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20891-C02-01/ES/MODELIZACION Y METODOS NUMERICOS, ALEATORIOS Y DETERMINISTAS, PARA EL FILTRADO DE PARTICULAS DIESEL EN MOTORES DE COMBUSTION INTERNA SOBREALIMENTADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Almenar, P.; Jódar Sánchez, LA. (2013). Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations. Abstract and Applied Analysis. 2013:1-11. doi:10.1155/2013/987976 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/987976 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.relation.senia 255832 es_ES
dc.identifier.eissn 1687-0409
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Kwong, M. K. (1981). On Lyapunov’s inequality for disfocality. Journal of Mathematical Analysis and Applications, 83(2), 486-494. doi:10.1016/0022-247x(81)90137-2 es_ES
dc.description.references Kwong, M. K. (1999). Integral Inequalities for Second-Order Linear Oscillation. Mathematical Inequalities & Applications, (1), 55-71. doi:10.7153/mia-02-06 es_ES
dc.description.references Harris, B. . (1990). On an inequality of Lyapunov for disfocality. Journal of Mathematical Analysis and Applications, 146(2), 495-500. doi:10.1016/0022-247x(90)90319-b es_ES
dc.description.references Brown, R. C., & Hinton, D. B. (1997). Proceedings of the American Mathematical Society, 125(04), 1123-1130. doi:10.1090/s0002-9939-97-03907-5 es_ES
dc.description.references Tipler, F. J. (1978). General relativity and conjugate ordinary differential equations. Journal of Differential Equations, 30(2), 165-174. doi:10.1016/0022-0396(78)90012-8 es_ES
dc.description.references Došlý, O. (1993). Conjugacy Criteria for Second Order Differential Equations. Rocky Mountain Journal of Mathematics, 23(3), 849-861. doi:10.1216/rmjm/1181072527 es_ES
dc.description.references Moore, R. (1955). The behavior of solutions of a linear differential equation of second order. Pacific Journal of Mathematics, 5(1), 125-145. doi:10.2140/pjm.1955.5.125 es_ES
dc.description.references Almenar, P., & Jódar, L. (2012). An upper bound for the distance between a zero and a critical point of a solution of a second order linear differential equation. Computers & Mathematics with Applications, 63(1), 310-317. doi:10.1016/j.camwa.2011.11.023 es_ES
dc.description.references Almenar, P., & Jódar, L. (2013). The Distribution of Zeroes and Critical Points of Solutions of a Second Order Half-Linear Differential Equation. Abstract and Applied Analysis, 2013, 1-6. doi:10.1155/2013/147192 es_ES
dc.description.references Bellman, R. (1943). The stability of solutions of linear differential equations. Duke Mathematical Journal, 10(4), 643-647. doi:10.1215/s0012-7094-43-01059-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem