- -

Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations

Mostrar el registro completo del ítem

Almenar, P.; Jódar Sánchez, LA. (2013). Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations. Abstract and Applied Analysis. 2013:1-11. doi:10.1155/2013/987976

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62576

Ficheros en el ítem

Metadatos del ítem

Título: Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations
Autor: Almenar, Pedro Jódar Sánchez, Lucas Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
This paper presents a method to determine whether the second-order linear differential equation y(n) + q(x)y = 0 is either disfocal or nondisfocal in a fixed interval. The method is based on the recursive application of a ...[+]
Palabras clave: Inequality , Oscillation , Lyapunov
Derechos de uso: Reconocimiento (by)
Fuente:
Abstract and Applied Analysis. (issn: 1085-3375 ) (eissn: 1687-0409 )
DOI: 10.1155/2013/987976
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2013/987976
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2010-20891-C02-01/ES/MODELIZACION Y METODOS NUMERICOS, ALEATORIOS Y DETERMINISTAS, PARA EL FILTRADO DE PARTICULAS DIESEL EN MOTORES DE COMBUSTION INTERNA SOBREALIMENTADOS/
Descripción: Copyright © 2013 Pedro Almenar and Lucas Jódar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Agradecimientos:
This work has been supported by the Spanish Ministry of Science and Innovation Project DPI2010-C02-01.
Tipo: Artículo

References

Kwong, M. K. (1981). On Lyapunov’s inequality for disfocality. Journal of Mathematical Analysis and Applications, 83(2), 486-494. doi:10.1016/0022-247x(81)90137-2

Kwong, M. K. (1999). Integral Inequalities for Second-Order Linear Oscillation. Mathematical Inequalities & Applications, (1), 55-71. doi:10.7153/mia-02-06

Harris, B. . (1990). On an inequality of Lyapunov for disfocality. Journal of Mathematical Analysis and Applications, 146(2), 495-500. doi:10.1016/0022-247x(90)90319-b [+]
Kwong, M. K. (1981). On Lyapunov’s inequality for disfocality. Journal of Mathematical Analysis and Applications, 83(2), 486-494. doi:10.1016/0022-247x(81)90137-2

Kwong, M. K. (1999). Integral Inequalities for Second-Order Linear Oscillation. Mathematical Inequalities & Applications, (1), 55-71. doi:10.7153/mia-02-06

Harris, B. . (1990). On an inequality of Lyapunov for disfocality. Journal of Mathematical Analysis and Applications, 146(2), 495-500. doi:10.1016/0022-247x(90)90319-b

Brown, R. C., & Hinton, D. B. (1997). Proceedings of the American Mathematical Society, 125(04), 1123-1130. doi:10.1090/s0002-9939-97-03907-5

Tipler, F. J. (1978). General relativity and conjugate ordinary differential equations. Journal of Differential Equations, 30(2), 165-174. doi:10.1016/0022-0396(78)90012-8

Došlý, O. (1993). Conjugacy Criteria for Second Order Differential Equations. Rocky Mountain Journal of Mathematics, 23(3), 849-861. doi:10.1216/rmjm/1181072527

Moore, R. (1955). The behavior of solutions of a linear differential equation of second order. Pacific Journal of Mathematics, 5(1), 125-145. doi:10.2140/pjm.1955.5.125

Almenar, P., & Jódar, L. (2012). An upper bound for the distance between a zero and a critical point of a solution of a second order linear differential equation. Computers & Mathematics with Applications, 63(1), 310-317. doi:10.1016/j.camwa.2011.11.023

Almenar, P., & Jódar, L. (2013). The Distribution of Zeroes and Critical Points of Solutions of a Second Order Half-Linear Differential Equation. Abstract and Applied Analysis, 2013, 1-6. doi:10.1155/2013/147192

Bellman, R. (1943). The stability of solutions of linear differential equations. Duke Mathematical Journal, 10(4), 643-647. doi:10.1215/s0012-7094-43-01059-2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem