Mostrar el registro sencillo del ítem
dc.contributor.author | Sansano Tomás, Mariola | es_ES |
dc.contributor.author | Juan Borrás, María del Sol | es_ES |
dc.contributor.author | Escriche Roberto, Mª Isabel | es_ES |
dc.contributor.author | Andrés Grau, Ana María | es_ES |
dc.contributor.author | Heredia Gutiérrez, Ana Belén | es_ES |
dc.date.accessioned | 2016-04-28T06:54:32Z | |
dc.date.available | 2016-04-28T06:54:32Z | |
dc.date.issued | 2015-05 | |
dc.identifier.issn | 0022-1147 | |
dc.identifier.uri | http://hdl.handle.net/10251/63085 | |
dc.description.abstract | [EN] This paper investigated the effect of air-frying technology, in combination with a pretreatment based of soaking the samples in different chemical agent solutions (citric acid, glycine, calcium lactate, sodium chloride, or nicotinic acid [vitamin B3]), on the generation of acrylamide in fried potatoes. The influence of reducing sugars on the development of surface s color was also analyzed. The experiments were conducted at 180 °C by means of air-frying and deep-oil-frying, as a reference technology. Based on the evolution of color crust with frying time, it could be concluded that the rate of Maillard reaction decreased as the initial reducing sugars content increased in the raw material, and was also lower for deep-oil-frying than for air-frying regardless of pretreatments applied. Air-frying reduced acrylamide content by about 90% compared with conventional deep-oil-frying without being necessary the application of a pretreatment. However, deep-oil fried potatoes pretreated with solutions of nicotinic acid, citric acid, glycine at 1%, and NaCl at 2% presented much lower acrylamide levels (up to 80% to 90% reduction) than nonpretreated samples. | es_ES |
dc.description.sponsorship | Authors would like to thank Generalitat Valenciana (GV/2012/072) for the financial support given to this investigation. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of Food Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acrylamide | es_ES |
dc.subject | Acrylamide, air-frying, additives, color, reducing sugars | es_ES |
dc.subject | Air-frying | es_ES |
dc.subject | Additives | es_ES |
dc.subject | Color | es_ES |
dc.subject | Reducing sugars | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Effect of Pretreatments and Air-Frying, a Novel Technology, on Acrylamide Generation in Fried Potatoes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/1750-3841.12843 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2012%2F072/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Sansano Tomás, M.; Juan Borrás, MDS.; Escriche Roberto, MI.; Andrés Grau, AM.; Heredia Gutiérrez, AB. (2015). Effect of Pretreatments and Air-Frying, a Novel Technology, on Acrylamide Generation in Fried Potatoes. Journal of Food Science. 80(5):1120-1128. https://doi.org/10.1111/1750-3841.12843 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1111/1750-3841.12843 | es_ES |
dc.description.upvformatpinicio | 1120 | es_ES |
dc.description.upvformatpfin | 1128 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 80 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 290839 | es_ES |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Amrein, T. M., Bachmann, S., Noti, A., Biedermann, M., Barbosa, M. F., Biedermann-Brem, S., … Amadó, R. (2003). Potential of Acrylamide Formation, Sugars, and Free Asparagine in Potatoes: A Comparison of Cultivars and Farming Systems. Journal of Agricultural and Food Chemistry, 51(18), 5556-5560. doi:10.1021/jf034344v | es_ES |
dc.description.references | Andrés, A., Arguelles, Á., Castelló, M. L., & Heredia, A. (2012). Mass Transfer and Volume Changes in French Fries During Air Frying. Food and Bioprocess Technology, 6(8), 1917-1924. doi:10.1007/s11947-012-0861-2 | es_ES |
dc.description.references | Anese, M., Bortolomeazzi, R., Manzocco, L., Manzano, M., Giusto, C., & Nicoli, M. C. (2009). Effect of chemical and biological dipping on acrylamide formation and sensory properties in deep-fried potatoes. Food Research International, 42(1), 142-147. doi:10.1016/j.foodres.2008.09.008 | es_ES |
dc.description.references | Bartkiene, E., Jakobsone, I., Juodeikiene, G., Vidmantiene, D., Pugajeva, I., & Bartkevics, V. (2013). Study on the reduction of acrylamide in mixed rye bread by fermentation with bacteriocin-like inhibitory substances producing lactic acid bacteria in combination with Aspergillus niger glucoamylase. Food Control, 30(1), 35-40. doi:10.1016/j.foodcont.2012.07.012 | es_ES |
dc.description.references | BLANK, I. (2005). Current Status of Acrylamide Research in Food: Measurement, Safety Assessment, and Formation. Annals of the New York Academy of Sciences, 1043(1), 30-40. doi:10.1196/annals.1333.004 | es_ES |
dc.description.references | BRATHEN, E., & KNUTSEN, S. (2005). Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chemistry, 92(4), 693-700. doi:10.1016/j.foodchem.2004.08.030 | es_ES |
dc.description.references | Cuadros-Rodrı́guez, L., Garcı́a-Campaña, A. M., Almansa-López, E., Egea-González, F. J., Lourdes Castro Cano, M., Garrido Frenich, A., & Martı́nez-Vidal, J. L. (2003). Correction function on biased results due to matrix effects. Analytica Chimica Acta, 478(2), 281-301. doi:10.1016/s0003-2670(02)01508-8 | es_ES |
dc.description.references | De Wilde, T., De Meulenaer, B., Mestdagh, F., Govaert, Y., Vandeburie, S., Ooghe, W., … Verhé, R. (2005). Influence of Storage Practices on Acrylamide Formation during Potato Frying. Journal of Agricultural and Food Chemistry, 53(16), 6550-6557. doi:10.1021/jf050650s | es_ES |
dc.description.references | Dueik, V., Moreno, M. C., & Bouchon, P. (2012). Microstructural approach to understand oil absorption during vacuum and atmospheric frying. Journal of Food Engineering, 111(3), 528-536. doi:10.1016/j.jfoodeng.2012.02.027 | es_ES |
dc.description.references | Gökmen, V., & Palazoğlu, T. K. (2009). Measurement of evaporated acrylamide during frying of potatoes: Effect of frying conditions and surface area-to-volume ratio. Journal of Food Engineering, 93(2), 172-176. doi:10.1016/j.jfoodeng.2009.01.011 | es_ES |
dc.description.references | Gökmen, V., & Şenyuva, H. Z. (2007). Acrylamide formation is prevented by divalent cations during the Maillard reaction. Food Chemistry, 103(1), 196-203. doi:10.1016/j.foodchem.2006.08.011 | es_ES |
dc.description.references | KUMAR, D., SINGH, B. P., & KUMAR, P. (2004). An overview of the factors affecting sugar content of potatoes. Annals of Applied Biology, 145(3), 247-256. doi:10.1111/j.1744-7348.2004.tb00380.x | es_ES |
dc.description.references | Kim, C. T., Hwang, E.-S., & Lee, H. J. (2005). Reducing Acrylamide in Fried Snack Products by Adding Amino Acids. Journal of Food Science, 70(5), C354-C358. doi:10.1111/j.1365-2621.2005.tb09966.x | es_ES |
dc.description.references | Low, M. Y., Koutsidis, G., Parker, J. K., Elmore, J. S., Dodson, A. T., & Mottram, D. S. (2006). Effect of Citric Acid and Glycine Addition on Acrylamide and Flavor in a Potato Model System. Journal of Agricultural and Food Chemistry, 54(16), 5976-5983. doi:10.1021/jf060328x | es_ES |
dc.description.references | Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11(9-10), 340-346. doi:10.1016/s0924-2244(01)00014-0 | es_ES |
dc.description.references | Mastovska, K., & Lehotay, S. J. (2006). Rapid Sample Preparation Method for LC−MS/MS or GC−MS Analysis of Acrylamide in Various Food Matrices. Journal of Agricultural and Food Chemistry, 54(19), 7001-7008. doi:10.1021/jf061330r | es_ES |
dc.description.references | Mestdagh, F., De Wilde, T., Fraselle, S., Govaert, Y., Ooghe, W., Degroodt, J.-M., … De Meulenaer, B. (2008). Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT - Food Science and Technology, 41(9), 1648-1654. doi:10.1016/j.lwt.2007.10.007 | es_ES |
dc.description.references | Mestdagh, F., Maertens, J., Cucu, T., Delporte, K., Van Peteghem, C., & De Meulenaer, B. (2008). Impact of additives to lower the formation of acrylamide in a potato model system through pH reduction and other mechanisms. Food Chemistry, 107(1), 26-31. doi:10.1016/j.foodchem.2007.07.013 | es_ES |
dc.description.references | Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi:10.1021/ac60147a030 | es_ES |
dc.description.references | Ngadi, M. O., Wang, Y., Adedeji, A. A., & Raghavan, G. S. V. (2009). Effect of microwave pretreatment on mass transfer during deep-fat frying of chicken nugget. LWT - Food Science and Technology, 42(1), 438-440. doi:10.1016/j.lwt.2008.06.006 | es_ES |
dc.description.references | Pedreschi, F., Kaack, K., & Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT - Food Science and Technology, 37(6), 679-685. doi:10.1016/j.lwt.2004.03.001 | es_ES |
dc.description.references | Pedreschi, F., Moyano, P., Kaack, K., & Granby, K. (2005). Color changes and acrylamide formation in fried potato slices. Food Research International, 38(1), 1-9. doi:10.1016/j.foodres.2004.07.002 | es_ES |
dc.description.references | Pedreschi, F., & Moyano, P. (2005). Effect of pre-drying on texture and oil uptake of potato chips. LWT - Food Science and Technology, 38(6), 599-604. doi:10.1016/j.lwt.2004.08.008 | es_ES |
dc.description.references | Pedreschi, F., Mariotti, S., Granby, K., & Risum, J. (2011). Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching. LWT - Food Science and Technology, 44(6), 1473-1476. doi:10.1016/j.lwt.2011.02.004 | es_ES |
dc.description.references | Rosén, J., & Hellenäs, K.-E. (2002). Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. The Analyst, 127(7), 880-882. doi:10.1039/b204938d | es_ES |
dc.description.references | Stadler, R. H., & Scholz, G. (2004). Acrylamide: An Update on Current Knowledge in Analysis, Levels in Food, Mechanisms of Formation, and Potential Strategies of Control. Nutrition Reviews, 62(12), 449-467. doi:10.1111/j.1753-4887.2004.tb00018.x | es_ES |
dc.description.references | Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT - Food Science and Technology, 42(6), 1164-1173. doi:10.1016/j.lwt.2009.01.008 | es_ES |
dc.description.references | Tuta, S., Palazoğlu, T. K., & Gökmen, V. (2010). Effect of microwave pre-thawing of frozen potato strips on acrylamide level and quality of French fries. Journal of Food Engineering, 97(2), 261-266. doi:10.1016/j.jfoodeng.2009.10.020 | es_ES |
dc.description.references | Wicklund, T., Østlie, H., Lothe, O., Knutsen, S. H., Bråthen, E., & Kita, A. (2006). Acrylamide in potato crisp—the effect of raw material and processing. LWT - Food Science and Technology, 39(5), 571-575. doi:10.1016/j.lwt.2005.03.005 | es_ES |
dc.description.references | WILLIAMS, J. (2005). Influence of variety and processing conditions on acrylamide levels in fried potato crisps. Food Chemistry, 90(4), 875-881. doi:10.1016/j.foodchem.2004.05.050 | es_ES |
dc.description.references | Yaylayan, V. A., Wnorowski, A., & Perez Locas, C. (2003). Why Asparagine Needs Carbohydrates To Generate Acrylamide. Journal of Agricultural and Food Chemistry, 51(6), 1753-1757. doi:10.1021/jf0261506 | es_ES |
dc.description.references | Zeng, X., Cheng, K.-W., Jiang, Y., Lin, Z.-X., Shi, J.-J., Ou, S.-Y., … Wang, M. (2009). Inhibition of acrylamide formation by vitamins in model reactions and fried potato strips. Food Chemistry, 116(1), 34-39. doi:10.1016/j.foodchem.2009.01.093 | es_ES |
dc.description.references | Zhang, Y., Ren, Y., Jiao, J., Li, D., & Zhang, Y. (2011). Ultra High-Performance Liquid Chromatography−Tandem Mass Spectrometry for the Simultaneous Analysis of Asparagine, Sugars, and Acrylamide in Maillard Reactions. Analytical Chemistry, 83(9), 3297-3304. doi:10.1021/ac1029538 | es_ES |
dc.description.references | Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., … Villagran, M. D. (2003). Acrylamide Formation Mechanism in Heated Foods. Journal of Agricultural and Food Chemistry, 51(16), 4782-4787. doi:10.1021/jf034180i | es_ES |