- -

Effect of Pretreatments and Air-Frying, a Novel Technology, on Acrylamide Generation in Fried Potatoes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Pretreatments and Air-Frying, a Novel Technology, on Acrylamide Generation in Fried Potatoes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sansano Tomás, Mariola es_ES
dc.contributor.author Juan Borrás, María del Sol es_ES
dc.contributor.author Escriche Roberto, Mª Isabel es_ES
dc.contributor.author Andrés Grau, Ana María es_ES
dc.contributor.author Heredia Gutiérrez, Ana Belén es_ES
dc.date.accessioned 2016-04-28T06:54:32Z
dc.date.available 2016-04-28T06:54:32Z
dc.date.issued 2015-05
dc.identifier.issn 0022-1147
dc.identifier.uri http://hdl.handle.net/10251/63085
dc.description.abstract [EN] This paper investigated the effect of air-frying technology, in combination with a pretreatment based of soaking the samples in different chemical agent solutions (citric acid, glycine, calcium lactate, sodium chloride, or nicotinic acid [vitamin B3]), on the generation of acrylamide in fried potatoes. The influence of reducing sugars on the development of surface s color was also analyzed. The experiments were conducted at 180 °C by means of air-frying and deep-oil-frying, as a reference technology. Based on the evolution of color crust with frying time, it could be concluded that the rate of Maillard reaction decreased as the initial reducing sugars content increased in the raw material, and was also lower for deep-oil-frying than for air-frying regardless of pretreatments applied. Air-frying reduced acrylamide content by about 90% compared with conventional deep-oil-frying without being necessary the application of a pretreatment. However, deep-oil fried potatoes pretreated with solutions of nicotinic acid, citric acid, glycine at 1%, and NaCl at 2% presented much lower acrylamide levels (up to 80% to 90% reduction) than nonpretreated samples. es_ES
dc.description.sponsorship Authors would like to thank Generalitat Valenciana (GV/2012/072) for the financial support given to this investigation. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Food Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acrylamide es_ES
dc.subject Acrylamide, air-frying, additives, color, reducing sugars es_ES
dc.subject Air-frying es_ES
dc.subject Additives es_ES
dc.subject Color es_ES
dc.subject Reducing sugars es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of Pretreatments and Air-Frying, a Novel Technology, on Acrylamide Generation in Fried Potatoes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/1750-3841.12843
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2012%2F072/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Sansano Tomás, M.; Juan Borrás, MDS.; Escriche Roberto, MI.; Andrés Grau, AM.; Heredia Gutiérrez, AB. (2015). Effect of Pretreatments and Air-Frying, a Novel Technology, on Acrylamide Generation in Fried Potatoes. Journal of Food Science. 80(5):1120-1128. https://doi.org/10.1111/1750-3841.12843 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1111/1750-3841.12843 es_ES
dc.description.upvformatpinicio 1120 es_ES
dc.description.upvformatpfin 1128 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 80 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 290839 es_ES
dc.contributor.funder Generalitat Valenciana
dc.description.references Amrein, T. M., Bachmann, S., Noti, A., Biedermann, M., Barbosa, M. F., Biedermann-Brem, S., … Amadó, R. (2003). Potential of Acrylamide Formation, Sugars, and Free Asparagine in Potatoes:  A Comparison of Cultivars and Farming Systems. Journal of Agricultural and Food Chemistry, 51(18), 5556-5560. doi:10.1021/jf034344v es_ES
dc.description.references Andrés, A., Arguelles, Á., Castelló, M. L., & Heredia, A. (2012). Mass Transfer and Volume Changes in French Fries During Air Frying. Food and Bioprocess Technology, 6(8), 1917-1924. doi:10.1007/s11947-012-0861-2 es_ES
dc.description.references Anese, M., Bortolomeazzi, R., Manzocco, L., Manzano, M., Giusto, C., & Nicoli, M. C. (2009). Effect of chemical and biological dipping on acrylamide formation and sensory properties in deep-fried potatoes. Food Research International, 42(1), 142-147. doi:10.1016/j.foodres.2008.09.008 es_ES
dc.description.references Bartkiene, E., Jakobsone, I., Juodeikiene, G., Vidmantiene, D., Pugajeva, I., & Bartkevics, V. (2013). Study on the reduction of acrylamide in mixed rye bread by fermentation with bacteriocin-like inhibitory substances producing lactic acid bacteria in combination with Aspergillus niger glucoamylase. Food Control, 30(1), 35-40. doi:10.1016/j.foodcont.2012.07.012 es_ES
dc.description.references BLANK, I. (2005). Current Status of Acrylamide Research in Food: Measurement, Safety Assessment, and Formation. Annals of the New York Academy of Sciences, 1043(1), 30-40. doi:10.1196/annals.1333.004 es_ES
dc.description.references BRATHEN, E., & KNUTSEN, S. (2005). Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chemistry, 92(4), 693-700. doi:10.1016/j.foodchem.2004.08.030 es_ES
dc.description.references Cuadros-Rodrı́guez, L., Garcı́a-Campaña, A. M., Almansa-López, E., Egea-González, F. J., Lourdes Castro Cano, M., Garrido Frenich, A., & Martı́nez-Vidal, J. L. (2003). Correction function on biased results due to matrix effects. Analytica Chimica Acta, 478(2), 281-301. doi:10.1016/s0003-2670(02)01508-8 es_ES
dc.description.references De Wilde, T., De Meulenaer, B., Mestdagh, F., Govaert, Y., Vandeburie, S., Ooghe, W., … Verhé, R. (2005). Influence of Storage Practices on Acrylamide Formation during Potato Frying. Journal of Agricultural and Food Chemistry, 53(16), 6550-6557. doi:10.1021/jf050650s es_ES
dc.description.references Dueik, V., Moreno, M. C., & Bouchon, P. (2012). Microstructural approach to understand oil absorption during vacuum and atmospheric frying. Journal of Food Engineering, 111(3), 528-536. doi:10.1016/j.jfoodeng.2012.02.027 es_ES
dc.description.references Gökmen, V., & Palazoğlu, T. K. (2009). Measurement of evaporated acrylamide during frying of potatoes: Effect of frying conditions and surface area-to-volume ratio. Journal of Food Engineering, 93(2), 172-176. doi:10.1016/j.jfoodeng.2009.01.011 es_ES
dc.description.references Gökmen, V., & Şenyuva, H. Z. (2007). Acrylamide formation is prevented by divalent cations during the Maillard reaction. Food Chemistry, 103(1), 196-203. doi:10.1016/j.foodchem.2006.08.011 es_ES
dc.description.references KUMAR, D., SINGH, B. P., & KUMAR, P. (2004). An overview of the factors affecting sugar content of potatoes. Annals of Applied Biology, 145(3), 247-256. doi:10.1111/j.1744-7348.2004.tb00380.x es_ES
dc.description.references Kim, C. T., Hwang, E.-S., & Lee, H. J. (2005). Reducing Acrylamide in Fried Snack Products by Adding Amino Acids. Journal of Food Science, 70(5), C354-C358. doi:10.1111/j.1365-2621.2005.tb09966.x es_ES
dc.description.references Low, M. Y., Koutsidis, G., Parker, J. K., Elmore, J. S., Dodson, A. T., & Mottram, D. S. (2006). Effect of Citric Acid and Glycine Addition on Acrylamide and Flavor in a Potato Model System. Journal of Agricultural and Food Chemistry, 54(16), 5976-5983. doi:10.1021/jf060328x es_ES
dc.description.references Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11(9-10), 340-346. doi:10.1016/s0924-2244(01)00014-0 es_ES
dc.description.references Mastovska, K., & Lehotay, S. J. (2006). Rapid Sample Preparation Method for LC−MS/MS or GC−MS Analysis of Acrylamide in Various Food Matrices. Journal of Agricultural and Food Chemistry, 54(19), 7001-7008. doi:10.1021/jf061330r es_ES
dc.description.references Mestdagh, F., De Wilde, T., Fraselle, S., Govaert, Y., Ooghe, W., Degroodt, J.-M., … De Meulenaer, B. (2008). Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT - Food Science and Technology, 41(9), 1648-1654. doi:10.1016/j.lwt.2007.10.007 es_ES
dc.description.references Mestdagh, F., Maertens, J., Cucu, T., Delporte, K., Van Peteghem, C., & De Meulenaer, B. (2008). Impact of additives to lower the formation of acrylamide in a potato model system through pH reduction and other mechanisms. Food Chemistry, 107(1), 26-31. doi:10.1016/j.foodchem.2007.07.013 es_ES
dc.description.references Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi:10.1021/ac60147a030 es_ES
dc.description.references Ngadi, M. O., Wang, Y., Adedeji, A. A., & Raghavan, G. S. V. (2009). Effect of microwave pretreatment on mass transfer during deep-fat frying of chicken nugget. LWT - Food Science and Technology, 42(1), 438-440. doi:10.1016/j.lwt.2008.06.006 es_ES
dc.description.references Pedreschi, F., Kaack, K., & Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT - Food Science and Technology, 37(6), 679-685. doi:10.1016/j.lwt.2004.03.001 es_ES
dc.description.references Pedreschi, F., Moyano, P., Kaack, K., & Granby, K. (2005). Color changes and acrylamide formation in fried potato slices. Food Research International, 38(1), 1-9. doi:10.1016/j.foodres.2004.07.002 es_ES
dc.description.references Pedreschi, F., & Moyano, P. (2005). Effect of pre-drying on texture and oil uptake of potato chips. LWT - Food Science and Technology, 38(6), 599-604. doi:10.1016/j.lwt.2004.08.008 es_ES
dc.description.references Pedreschi, F., Mariotti, S., Granby, K., & Risum, J. (2011). Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching. LWT - Food Science and Technology, 44(6), 1473-1476. doi:10.1016/j.lwt.2011.02.004 es_ES
dc.description.references Rosén, J., & Hellenäs, K.-E. (2002). Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. The Analyst, 127(7), 880-882. doi:10.1039/b204938d es_ES
dc.description.references Stadler, R. H., & Scholz, G. (2004). Acrylamide: An Update on Current Knowledge in Analysis, Levels in Food, Mechanisms of Formation, and Potential Strategies of Control. Nutrition Reviews, 62(12), 449-467. doi:10.1111/j.1753-4887.2004.tb00018.x es_ES
dc.description.references Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT - Food Science and Technology, 42(6), 1164-1173. doi:10.1016/j.lwt.2009.01.008 es_ES
dc.description.references Tuta, S., Palazoğlu, T. K., & Gökmen, V. (2010). Effect of microwave pre-thawing of frozen potato strips on acrylamide level and quality of French fries. Journal of Food Engineering, 97(2), 261-266. doi:10.1016/j.jfoodeng.2009.10.020 es_ES
dc.description.references Wicklund, T., Østlie, H., Lothe, O., Knutsen, S. H., Bråthen, E., & Kita, A. (2006). Acrylamide in potato crisp—the effect of raw material and processing. LWT - Food Science and Technology, 39(5), 571-575. doi:10.1016/j.lwt.2005.03.005 es_ES
dc.description.references WILLIAMS, J. (2005). Influence of variety and processing conditions on acrylamide levels in fried potato crisps. Food Chemistry, 90(4), 875-881. doi:10.1016/j.foodchem.2004.05.050 es_ES
dc.description.references Yaylayan, V. A., Wnorowski, A., & Perez Locas, C. (2003). Why Asparagine Needs Carbohydrates To Generate Acrylamide. Journal of Agricultural and Food Chemistry, 51(6), 1753-1757. doi:10.1021/jf0261506 es_ES
dc.description.references Zeng, X., Cheng, K.-W., Jiang, Y., Lin, Z.-X., Shi, J.-J., Ou, S.-Y., … Wang, M. (2009). Inhibition of acrylamide formation by vitamins in model reactions and fried potato strips. Food Chemistry, 116(1), 34-39. doi:10.1016/j.foodchem.2009.01.093 es_ES
dc.description.references Zhang, Y., Ren, Y., Jiao, J., Li, D., & Zhang, Y. (2011). Ultra High-Performance Liquid Chromatography−Tandem Mass Spectrometry for the Simultaneous Analysis of Asparagine, Sugars, and Acrylamide in Maillard Reactions. Analytical Chemistry, 83(9), 3297-3304. doi:10.1021/ac1029538 es_ES
dc.description.references Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., … Villagran, M. D. (2003). Acrylamide Formation Mechanism in Heated Foods. Journal of Agricultural and Food Chemistry, 51(16), 4782-4787. doi:10.1021/jf034180i es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem