ALIZON, S., HURFORD, A., MIDEO, N., & VAN BAALEN, M. (2008). Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology, 22(2), 245-259. doi:10.1111/j.1420-9101.2008.01658.x
Boiteux, L. S. (1995). Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics, 90(1), 146-149. doi:10.1007/bf00221009
Boiteux, L. S. (1993). Susceptibility of Capsicum chinense PI 159236 to Tomato Spotted Wilt Virus Isolates in Brazil. Plant Disease, 77(2), 210F. doi:10.1094/pd-77-0210f
[+]
ALIZON, S., HURFORD, A., MIDEO, N., & VAN BAALEN, M. (2008). Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology, 22(2), 245-259. doi:10.1111/j.1420-9101.2008.01658.x
Boiteux, L. S. (1995). Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics, 90(1), 146-149. doi:10.1007/bf00221009
Boiteux, L. S. (1993). Susceptibility of Capsicum chinense PI 159236 to Tomato Spotted Wilt Virus Isolates in Brazil. Plant Disease, 77(2), 210F. doi:10.1094/pd-77-0210f
Chain, F., Riault, G., Trottet, M., & Jacquot, E. (2006). Evaluation of the durability of the Barley yellow dwarf virus-resistant Zhong ZH and TC14 wheat lines. European Journal of Plant Pathology, 117(1), 35-43. doi:10.1007/s10658-006-9066-8
Clark, M. F., & Adams, A. N. (1977). Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. Journal of General Virology, 34(3), 475-483. doi:10.1099/0022-1317-34-3-475
Debreczeni, D. E., Ruiz-Ruiz, S., Aramburu, J., López, C., Belliure, B., Galipienso, L., … Rubio, L. (2011). Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan®MGB probes. Journal of Virological Methods, 176(1-2), 32-37. doi:10.1016/j.jviromet.2011.05.027
Debreczeni, D. E., Rubio, L., Aramburu, J., López, C., Galipienso, L., Soler, S., & Belliure, B. (2013). Transmission ofTomato spotted wilt virusisolates able and unable to overcome tomato or pepper resistance by its vectorFrankliniella occidentalis. Annals of Applied Biology, 164(2), 182-189. doi:10.1111/aab.12090
Desbiez, C., Gal-On, A., Girard, M., Wipf-Scheibel, C., & Lecoq, H. (2003). Increase inZucchini yellow mosaic virusSymptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is Associated with a Loss of Relative Fitness on Susceptible Plants. Phytopathology, 93(12), 1478-1484. doi:10.1094/phyto.2003.93.12.1478
Galipienso, L., Janssen, D., Rubio, L., Aramburu, J., & Velasco, L. (2013). Cucumber vein yellowing virus isolate-specific expression of symptoms and viral RNA accumulation in susceptible and resistant cucumber cultivars. Crop Protection, 43, 141-145. doi:10.1016/j.cropro.2012.08.004
García-Arenal, F., & McDonald, B. A. (2003). An Analysis of the Durability of Resistance to Plant Viruses. Phytopathology, 93(8), 941-952. doi:10.1094/phyto.2003.93.8.941
De Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA Segment of Tomato Spotted Wilt Virus has an Ambisense Character. Journal of General Virology, 71(5), 1001-1007. doi:10.1099/0022-1317-71-5-1001
De Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72(9), 2207-2216. doi:10.1099/0022-1317-72-9-2207
Hillung, J., Elena, S. F., & Cuevas, J. M. (2013). Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology, 13(1), 249. doi:10.1186/1471-2148-13-249
Hobbs, H. A. (1994). Differences in Reactions Among Tomato Spotted Wilt Virus Isolates to Three Resistant Capsicum chinense Lines. Plant Disease, 78, 1220D. doi:10.1094/pd-78-1220d
Jahn, M., Paran, I., Hoffmann, K., Radwanski, E. R., Livingstone, K. D., Grube, R. C., … Moyer, J. (2000). Genetic Mapping of theTswLocus for Resistance to theTospovirus Tomato spotted wilt virusinCapsicumspp. and Its Relationship to theSw-5Gene for Resistance to the Same Pathogen in Tomato. Molecular Plant-Microbe Interactions, 13(6), 673-682. doi:10.1094/mpmi.2000.13.6.673
Jenner, C. E., Wang, X., Ponz, F., & Walsh, J. A. (2002). A fitness cost for Turnip mosaic virus to overcome host resistance. Virus Research, 86(1-2), 1-6. doi:10.1016/s0168-1702(02)00031-x
Kaplan, E. L., & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282), 457-481. doi:10.1080/01621459.1958.10501452
Lafforgue, G., Martinez, F., Sardanyes, J., de la Iglesia, F., Niu, Q.-W., Lin, S.-S., … Elena, S. F. (2011). Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance. Journal of Virology, 85(19), 9686-9695. doi:10.1128/jvi.05326-11
Lecoq, H., Moury, B., Desbiez, C., Palloix, A., & Pitrat, M. (2004). Durable virus resistance in plants through conventional approaches: a challenge. Virus Research, 100(1), 31-39. doi:10.1016/j.virusres.2003.12.012
Lewandowski, D. J., & Adkins, S. (2005). The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology, 342(1), 26-37. doi:10.1016/j.virol.2005.06.050
Li, W., Lewandowski, D. J., Hilf, M. E., & Adkins, S. (2009). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 390(1), 110-121. doi:10.1016/j.virol.2009.04.027
Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2010). Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. Journal of General Virology, 92(1), 210-215. doi:10.1099/vir.0.026708-0
Mackay, I. M. (2002). Real-time PCR in virology. Nucleic Acids Research, 30(6), 1292-1305. doi:10.1093/nar/30.6.1292
Margaria, P., Ciuffo, M., Pacifico, D., & Turina, M. (2007). Evidence That the Nonstructural Protein of Tomato spotted wilt virus Is the Avirulence Determinant in the Interaction with Resistant Pepper Carrying the Tsw Gene. Molecular Plant-Microbe Interactions, 20(5), 547-558. doi:10.1094/mpmi-20-5-0547
Moury, B., & Verdin, E. (2012). Viruses of Pepper Crops in the Mediterranean Basin. Viruses and Virus Diseases of Vegetables in the Mediterranean Basin, 127-162. doi:10.1016/b978-0-12-394314-9.00004-x
Moury, B., Selassie, K. G., Marchoux, G., Daubèze, A.-M., & Palloix, A. (1998). European Journal of Plant Pathology, 104(5), 489-498. doi:10.1023/a:1008618022144
Moya, A., Holmes, E. C., & González-Candelas, F. (2004). The population genetics and evolutionary epidemiology of RNA viruses. Nature Reviews Microbiology, 2(4), 279-288. doi:10.1038/nrmicro863
Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531-539. doi:10.1038/nrg2603
Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141(2), 219-236. doi:10.1016/j.virusres.2009.01.009
Peiró, A., Cañizares, M. C., Rubio, L., López, C., Moriones, E., Aramburu, J., & Sánchez-Navarro, J. (2014). The movement protein (NSm) ofTomato spotted wilt virusis the avirulence determinant in the tomatoSw-5gene-based resistance. Molecular Plant Pathology, 15(8), 802-813. doi:10.1111/mpp.12142
Peña, E. J., Ferriol, I., Sambade, A., Buschmann, H., Niehl, A., Elena, S. F., … Heinlein, M. (2014). Experimental Virus Evolution Reveals a Role of Plant Microtubule Dynamics and TORTIFOLIA1/SPIRAL2 in RNA Trafficking. PLoS ONE, 9(8), e105364. doi:10.1371/journal.pone.0105364
Peto, R., & Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Procedures. Journal of the Royal Statistical Society. Series A (General), 135(2), 185. doi:10.2307/2344317
Roggero, P., Masenga, V., & Tavella, L. (2002). Field Isolates of Tomato spotted wilt virus Overcoming Resistance in Pepper and Their Spread to Other Hosts in Italy. Plant Disease, 86(9), 950-954. doi:10.1094/pdis.2002.86.9.950
De Ronde, D., Butterbach, P., Lohuis, D., Hedil, M., van Lent, J. W. M., & Kormelink, R. (2013). Tswgene-based resistance is triggered by a functional RNA silencing suppressor protein of theTomato spotted wilt virus. Molecular Plant Pathology, 14(4), 405-415. doi:10.1111/mpp.12016
Rubio, L., Herrero, J. R., Sarrio, J., Moreno, P., & Guerri, J. (2003). A new approach to evaluate relative resistance and tolerance of tomato cultivars to begomoviruses causing the tomato yellow leaf curl disease in Spain. Plant Pathology, 52(6), 763-769. doi:10.1111/j.1365-3059.2003.00926.x
Sin, S.-H., McNulty, B. C., Kennedy, G. G., & Moyer, J. W. (2005). Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences, 102(14), 5168-5173. doi:10.1073/pnas.0407354102
Soler, S., Díez, M. J., & Nuez, F. (1998). Effect of Temperature Regime and Growth Stage Interaction on Pattern of Virus Presence in TSWV-Resistant Accessions ofCapsicum chinense. Plant Disease, 82(11), 1199-1204. doi:10.1094/pdis.1998.82.11.1199
Soler, S., Díez, M. J., Roselló, S., & Nuez, F. (1999). Movement and distribution of tomato spotted wilt virus in resistant and susceptible accessions ofCapsicumspp. Canadian Journal of Plant Pathology, 21(4), 317-325. doi:10.1080/07060669909501167
Sorho, F., Pinel, A., Traoré, O., Bersoult, A., Ghesquière, A., Hébrard, E., … Fargette, D. (2005). Durability of natural and transgenic resistances in rice to Rice yellow mottle virus. European Journal of Plant Pathology, 112(4), 349-359. doi:10.1007/s10658-005-6607-5
Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., … Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532(1-2), 75-79. doi:10.1016/s0014-5793(02)03632-3
Tentchev, D., Verdin, E., Marchal, C., Jacquet, M., Aguilar, J. M., & Moury, B. (2010). Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. Journal of General Virology, 92(4), 961-973. doi:10.1099/vir.0.029082-0
THOMAS-CARROLL, M. L., & JONES, R. A. C. (2003). Selection, biological properties and fitness of resistance-breaking strains of Tomato spotted wilt virus in pepper. Annals of Applied Biology, 142(2), 235-243. doi:10.1111/j.1744-7348.2003.tb00246.x
TSOMPANA, M., ABAD, J., PURUGGANAN, M., & MOYER, J. W. (2004). The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Molecular Ecology, 14(1), 53-66. doi:10.1111/j.1365-294x.2004.02392.x
Turina, M., Tavella, L., & Ciuffo, M. (2012). Tospoviruses in the Mediterranean Area. Viruses and Virus Diseases of Vegetables in the Mediterranean Basin, 403-437. doi:10.1016/b978-0-12-394314-9.00012-9
Whitfield, A. E., Ullman, D. E., & German, T. L. (2005). Tospovirus-Thrips Interactions. Annual Review of Phytopathology, 43(1), 459-489. doi:10.1146/annurev.phyto.43.040204.140017
[-]