Mostrar el registro sencillo del ítem
dc.contributor.author | Soler Aleixandre, Salvador | es_ES |
dc.contributor.author | Debreczeni, Diana Elvira | es_ES |
dc.contributor.author | Vidal, Eduardo | es_ES |
dc.contributor.author | Aramburu, José | es_ES |
dc.contributor.author | López Del Rincón, Carmelo | es_ES |
dc.contributor.author | Galipienso Torregrosa, Luis | es_ES |
dc.contributor.author | Rubio Miguelez, Luis | es_ES |
dc.date.accessioned | 2016-05-03T08:12:39Z | |
dc.date.available | 2016-05-03T08:12:39Z | |
dc.date.issued | 2015-11 | |
dc.identifier.issn | 0003-4746 | |
dc.identifier.uri | http://hdl.handle.net/10251/63392 | |
dc.description.abstract | [EN] Tomato spotted wilt virus (TSWV) causes economically important losses in many crops, worldwide. In pepper (Capsicum annuum), the best method for disease control has been breeding resistant cultivars by introgression of gene Tsw from Capsicum chinense. However, this resistance has two drawbacks: (a) it is not efficient if plants are infected at early growth stages and under prolonged high temperatures, and (b) it is rapidly overcome by TSWV evolution. In this work, we selected and evaluated a new accession from Capsicum baccatum, named PIM26-1, using a novel approach consisting in measuring how three parameters related to virus infection changed over time, in comparison to a susceptible pepper variety (Negral) and a resistant (with Tsw) accession (PI-159236): (a) The level of resistance to virus accumulation was estimated as an opposite to absolute fitness, W=er , being r the viral multiplication rate calculated by quantitative RT-PCR; (b); the level of resistance to virus infection was estimated as the Kaplan–Meier survival time for no infection using DAS-ELISA to identify TSWV-infected plants; (c) the level of tolerance was estimated as the Kaplan–Meier survival time for no appearance of severe symptoms. Our results showed that the levels of both resistance parameters against TSWV wild type (WT) and Tsw-resistance breaking (TBR) isolates were higher in PIM26-1 than in the susceptible pepper variety Negral and similar to the resistant variety PI-159236 against the TBR isolate. However, PIM26-1 showed a very high tolerance (none of the plants developed severe symptoms) to the WT and TBR isolates in contrast to Negral for WT and TBR or PI-159236 for TBR (most TSWV-inoculated plants developed severe symptoms). All this indicate that the new accession PIM26-1 is a good candidate for breeding programmes to avoid damages caused by TSWV TBR isolates in pepper | es_ES |
dc.description.sponsorship | D.E.D. was the recipient of a fellowship FPU from the Spanish Ministry of Education, Culture and Sports. This work was funded in part by INIA projects RTA2008-00010-C03 and RTA2013-00047-C02. We thank E. Lazaro and Dr. C. Armero (Dept. Statistics and Operational Research, University of Valencia) for helpful suggestions on statistics and Drs. N. Duran and J. Guerri (IVIA) for critical reading of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Annals of Applied Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | TSWV | es_ES |
dc.subject | Tospovirus, Bunyaviridae | es_ES |
dc.subject | Plant breeding | es_ES |
dc.subject | Pepper | es_ES |
dc.subject | Kaplan-Meier | es_ES |
dc.subject | Fitness | es_ES |
dc.subject | Resistance | es_ES |
dc.subject | RNA SILENCING SUPPRESSOR | es_ES |
dc.subject | Mosaic-virus | es_ES |
dc.title | A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/aab.12229 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2013-00047-C02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RTA2008-00010-C03-01/ES/Diversidad genética y factores evolutivos y epidemiológicos implicados en los aislados españoles de TSWV que superan las resistencias genéticas Sw-5 de tomate y Tsw de pimiento/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Soler Aleixandre, S.; Debreczeni, DE.; Vidal, E.; Aramburu, J.; López Del Rincón, C.; Galipienso Torregrosa, L.; Rubio Miguelez, L. (2015). A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus. Annals of Applied Biology. 167:343-353. https://doi.org/10.1111/aab.12229 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1111/aab.12229 | es_ES |
dc.description.upvformatpinicio | 343 | es_ES |
dc.description.upvformatpfin | 353 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 167 | es_ES |
dc.relation.senia | 294919 | es_ES |
dc.identifier.eissn | 1744-7348 | |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | ALIZON, S., HURFORD, A., MIDEO, N., & VAN BAALEN, M. (2008). Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology, 22(2), 245-259. doi:10.1111/j.1420-9101.2008.01658.x | es_ES |
dc.description.references | Boiteux, L. S. (1995). Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics, 90(1), 146-149. doi:10.1007/bf00221009 | es_ES |
dc.description.references | Boiteux, L. S. (1993). Susceptibility of Capsicum chinense PI 159236 to Tomato Spotted Wilt Virus Isolates in Brazil. Plant Disease, 77(2), 210F. doi:10.1094/pd-77-0210f | es_ES |
dc.description.references | Chain, F., Riault, G., Trottet, M., & Jacquot, E. (2006). Evaluation of the durability of the Barley yellow dwarf virus-resistant Zhong ZH and TC14 wheat lines. European Journal of Plant Pathology, 117(1), 35-43. doi:10.1007/s10658-006-9066-8 | es_ES |
dc.description.references | Clark, M. F., & Adams, A. N. (1977). Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. Journal of General Virology, 34(3), 475-483. doi:10.1099/0022-1317-34-3-475 | es_ES |
dc.description.references | Debreczeni, D. E., Ruiz-Ruiz, S., Aramburu, J., López, C., Belliure, B., Galipienso, L., … Rubio, L. (2011). Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan®MGB probes. Journal of Virological Methods, 176(1-2), 32-37. doi:10.1016/j.jviromet.2011.05.027 | es_ES |
dc.description.references | Debreczeni, D. E., Rubio, L., Aramburu, J., López, C., Galipienso, L., Soler, S., & Belliure, B. (2013). Transmission ofTomato spotted wilt virusisolates able and unable to overcome tomato or pepper resistance by its vectorFrankliniella occidentalis. Annals of Applied Biology, 164(2), 182-189. doi:10.1111/aab.12090 | es_ES |
dc.description.references | Desbiez, C., Gal-On, A., Girard, M., Wipf-Scheibel, C., & Lecoq, H. (2003). Increase inZucchini yellow mosaic virusSymptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is Associated with a Loss of Relative Fitness on Susceptible Plants. Phytopathology, 93(12), 1478-1484. doi:10.1094/phyto.2003.93.12.1478 | es_ES |
dc.description.references | Galipienso, L., Janssen, D., Rubio, L., Aramburu, J., & Velasco, L. (2013). Cucumber vein yellowing virus isolate-specific expression of symptoms and viral RNA accumulation in susceptible and resistant cucumber cultivars. Crop Protection, 43, 141-145. doi:10.1016/j.cropro.2012.08.004 | es_ES |
dc.description.references | García-Arenal, F., & McDonald, B. A. (2003). An Analysis of the Durability of Resistance to Plant Viruses. Phytopathology, 93(8), 941-952. doi:10.1094/phyto.2003.93.8.941 | es_ES |
dc.description.references | De Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA Segment of Tomato Spotted Wilt Virus has an Ambisense Character. Journal of General Virology, 71(5), 1001-1007. doi:10.1099/0022-1317-71-5-1001 | es_ES |
dc.description.references | De Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72(9), 2207-2216. doi:10.1099/0022-1317-72-9-2207 | es_ES |
dc.description.references | Hillung, J., Elena, S. F., & Cuevas, J. M. (2013). Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology, 13(1), 249. doi:10.1186/1471-2148-13-249 | es_ES |
dc.description.references | Hobbs, H. A. (1994). Differences in Reactions Among Tomato Spotted Wilt Virus Isolates to Three Resistant Capsicum chinense Lines. Plant Disease, 78, 1220D. doi:10.1094/pd-78-1220d | es_ES |
dc.description.references | Jahn, M., Paran, I., Hoffmann, K., Radwanski, E. R., Livingstone, K. D., Grube, R. C., … Moyer, J. (2000). Genetic Mapping of theTswLocus for Resistance to theTospovirus Tomato spotted wilt virusinCapsicumspp. and Its Relationship to theSw-5Gene for Resistance to the Same Pathogen in Tomato. Molecular Plant-Microbe Interactions, 13(6), 673-682. doi:10.1094/mpmi.2000.13.6.673 | es_ES |
dc.description.references | Jenner, C. E., Wang, X., Ponz, F., & Walsh, J. A. (2002). A fitness cost for Turnip mosaic virus to overcome host resistance. Virus Research, 86(1-2), 1-6. doi:10.1016/s0168-1702(02)00031-x | es_ES |
dc.description.references | Kaplan, E. L., & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282), 457-481. doi:10.1080/01621459.1958.10501452 | es_ES |
dc.description.references | Lafforgue, G., Martinez, F., Sardanyes, J., de la Iglesia, F., Niu, Q.-W., Lin, S.-S., … Elena, S. F. (2011). Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance. Journal of Virology, 85(19), 9686-9695. doi:10.1128/jvi.05326-11 | es_ES |
dc.description.references | Lecoq, H., Moury, B., Desbiez, C., Palloix, A., & Pitrat, M. (2004). Durable virus resistance in plants through conventional approaches: a challenge. Virus Research, 100(1), 31-39. doi:10.1016/j.virusres.2003.12.012 | es_ES |
dc.description.references | Lewandowski, D. J., & Adkins, S. (2005). The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology, 342(1), 26-37. doi:10.1016/j.virol.2005.06.050 | es_ES |
dc.description.references | Li, W., Lewandowski, D. J., Hilf, M. E., & Adkins, S. (2009). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 390(1), 110-121. doi:10.1016/j.virol.2009.04.027 | es_ES |
dc.description.references | Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2010). Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. Journal of General Virology, 92(1), 210-215. doi:10.1099/vir.0.026708-0 | es_ES |
dc.description.references | Mackay, I. M. (2002). Real-time PCR in virology. Nucleic Acids Research, 30(6), 1292-1305. doi:10.1093/nar/30.6.1292 | es_ES |
dc.description.references | Margaria, P., Ciuffo, M., Pacifico, D., & Turina, M. (2007). Evidence That the Nonstructural Protein of Tomato spotted wilt virus Is the Avirulence Determinant in the Interaction with Resistant Pepper Carrying the Tsw Gene. Molecular Plant-Microbe Interactions, 20(5), 547-558. doi:10.1094/mpmi-20-5-0547 | es_ES |
dc.description.references | Moury, B., & Verdin, E. (2012). Viruses of Pepper Crops in the Mediterranean Basin. Viruses and Virus Diseases of Vegetables in the Mediterranean Basin, 127-162. doi:10.1016/b978-0-12-394314-9.00004-x | es_ES |
dc.description.references | Moury, B., Selassie, K. G., Marchoux, G., Daubèze, A.-M., & Palloix, A. (1998). European Journal of Plant Pathology, 104(5), 489-498. doi:10.1023/a:1008618022144 | es_ES |
dc.description.references | Moya, A., Holmes, E. C., & González-Candelas, F. (2004). The population genetics and evolutionary epidemiology of RNA viruses. Nature Reviews Microbiology, 2(4), 279-288. doi:10.1038/nrmicro863 | es_ES |
dc.description.references | Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531-539. doi:10.1038/nrg2603 | es_ES |
dc.description.references | Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141(2), 219-236. doi:10.1016/j.virusres.2009.01.009 | es_ES |
dc.description.references | Peiró, A., Cañizares, M. C., Rubio, L., López, C., Moriones, E., Aramburu, J., & Sánchez-Navarro, J. (2014). The movement protein (NSm) ofTomato spotted wilt virusis the avirulence determinant in the tomatoSw-5gene-based resistance. Molecular Plant Pathology, 15(8), 802-813. doi:10.1111/mpp.12142 | es_ES |
dc.description.references | Peña, E. J., Ferriol, I., Sambade, A., Buschmann, H., Niehl, A., Elena, S. F., … Heinlein, M. (2014). Experimental Virus Evolution Reveals a Role of Plant Microtubule Dynamics and TORTIFOLIA1/SPIRAL2 in RNA Trafficking. PLoS ONE, 9(8), e105364. doi:10.1371/journal.pone.0105364 | es_ES |
dc.description.references | Peto, R., & Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Procedures. Journal of the Royal Statistical Society. Series A (General), 135(2), 185. doi:10.2307/2344317 | es_ES |
dc.description.references | Roggero, P., Masenga, V., & Tavella, L. (2002). Field Isolates of Tomato spotted wilt virus Overcoming Resistance in Pepper and Their Spread to Other Hosts in Italy. Plant Disease, 86(9), 950-954. doi:10.1094/pdis.2002.86.9.950 | es_ES |
dc.description.references | De Ronde, D., Butterbach, P., Lohuis, D., Hedil, M., van Lent, J. W. M., & Kormelink, R. (2013). Tswgene-based resistance is triggered by a functional RNA silencing suppressor protein of theTomato spotted wilt virus. Molecular Plant Pathology, 14(4), 405-415. doi:10.1111/mpp.12016 | es_ES |
dc.description.references | Rubio, L., Herrero, J. R., Sarrio, J., Moreno, P., & Guerri, J. (2003). A new approach to evaluate relative resistance and tolerance of tomato cultivars to begomoviruses causing the tomato yellow leaf curl disease in Spain. Plant Pathology, 52(6), 763-769. doi:10.1111/j.1365-3059.2003.00926.x | es_ES |
dc.description.references | Sin, S.-H., McNulty, B. C., Kennedy, G. G., & Moyer, J. W. (2005). Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences, 102(14), 5168-5173. doi:10.1073/pnas.0407354102 | es_ES |
dc.description.references | Soler, S., Díez, M. J., & Nuez, F. (1998). Effect of Temperature Regime and Growth Stage Interaction on Pattern of Virus Presence in TSWV-Resistant Accessions ofCapsicum chinense. Plant Disease, 82(11), 1199-1204. doi:10.1094/pdis.1998.82.11.1199 | es_ES |
dc.description.references | Soler, S., Díez, M. J., Roselló, S., & Nuez, F. (1999). Movement and distribution of tomato spotted wilt virus in resistant and susceptible accessions ofCapsicumspp. Canadian Journal of Plant Pathology, 21(4), 317-325. doi:10.1080/07060669909501167 | es_ES |
dc.description.references | Sorho, F., Pinel, A., Traoré, O., Bersoult, A., Ghesquière, A., Hébrard, E., … Fargette, D. (2005). Durability of natural and transgenic resistances in rice to Rice yellow mottle virus. European Journal of Plant Pathology, 112(4), 349-359. doi:10.1007/s10658-005-6607-5 | es_ES |
dc.description.references | Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., … Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532(1-2), 75-79. doi:10.1016/s0014-5793(02)03632-3 | es_ES |
dc.description.references | Tentchev, D., Verdin, E., Marchal, C., Jacquet, M., Aguilar, J. M., & Moury, B. (2010). Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. Journal of General Virology, 92(4), 961-973. doi:10.1099/vir.0.029082-0 | es_ES |
dc.description.references | THOMAS-CARROLL, M. L., & JONES, R. A. C. (2003). Selection, biological properties and fitness of resistance-breaking strains of Tomato spotted wilt virus in pepper. Annals of Applied Biology, 142(2), 235-243. doi:10.1111/j.1744-7348.2003.tb00246.x | es_ES |
dc.description.references | TSOMPANA, M., ABAD, J., PURUGGANAN, M., & MOYER, J. W. (2004). The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Molecular Ecology, 14(1), 53-66. doi:10.1111/j.1365-294x.2004.02392.x | es_ES |
dc.description.references | Turina, M., Tavella, L., & Ciuffo, M. (2012). Tospoviruses in the Mediterranean Area. Viruses and Virus Diseases of Vegetables in the Mediterranean Basin, 403-437. doi:10.1016/b978-0-12-394314-9.00012-9 | es_ES |
dc.description.references | Whitfield, A. E., Ullman, D. E., & German, T. L. (2005). Tospovirus-Thrips Interactions. Annual Review of Phytopathology, 43(1), 459-489. doi:10.1146/annurev.phyto.43.040204.140017 | es_ES |