- -

A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Soler Aleixandre, Salvador es_ES
dc.contributor.author Debreczeni, Diana Elvira es_ES
dc.contributor.author Vidal, Eduardo es_ES
dc.contributor.author Aramburu, José es_ES
dc.contributor.author López Del Rincón, Carmelo es_ES
dc.contributor.author Galipienso Torregrosa, Luis es_ES
dc.contributor.author Rubio Miguelez, Luis es_ES
dc.date.accessioned 2016-05-03T08:12:39Z
dc.date.available 2016-05-03T08:12:39Z
dc.date.issued 2015-11
dc.identifier.issn 0003-4746
dc.identifier.uri http://hdl.handle.net/10251/63392
dc.description.abstract [EN] Tomato spotted wilt virus (TSWV) causes economically important losses in many crops, worldwide. In pepper (Capsicum annuum), the best method for disease control has been breeding resistant cultivars by introgression of gene Tsw from Capsicum chinense. However, this resistance has two drawbacks: (a) it is not efficient if plants are infected at early growth stages and under prolonged high temperatures, and (b) it is rapidly overcome by TSWV evolution. In this work, we selected and evaluated a new accession from Capsicum baccatum, named PIM26-1, using a novel approach consisting in measuring how three parameters related to virus infection changed over time, in comparison to a susceptible pepper variety (Negral) and a resistant (with Tsw) accession (PI-159236): (a) The level of resistance to virus accumulation was estimated as an opposite to absolute fitness, W=er , being r the viral multiplication rate calculated by quantitative RT-PCR; (b); the level of resistance to virus infection was estimated as the Kaplan–Meier survival time for no infection using DAS-ELISA to identify TSWV-infected plants; (c) the level of tolerance was estimated as the Kaplan–Meier survival time for no appearance of severe symptoms. Our results showed that the levels of both resistance parameters against TSWV wild type (WT) and Tsw-resistance breaking (TBR) isolates were higher in PIM26-1 than in the susceptible pepper variety Negral and similar to the resistant variety PI-159236 against the TBR isolate. However, PIM26-1 showed a very high tolerance (none of the plants developed severe symptoms) to the WT and TBR isolates in contrast to Negral for WT and TBR or PI-159236 for TBR (most TSWV-inoculated plants developed severe symptoms). All this indicate that the new accession PIM26-1 is a good candidate for breeding programmes to avoid damages caused by TSWV TBR isolates in pepper es_ES
dc.description.sponsorship D.E.D. was the recipient of a fellowship FPU from the Spanish Ministry of Education, Culture and Sports. This work was funded in part by INIA projects RTA2008-00010-C03 and RTA2013-00047-C02. We thank E. Lazaro and Dr. C. Armero (Dept. Statistics and Operational Research, University of Valencia) for helpful suggestions on statistics and Drs. N. Duran and J. Guerri (IVIA) for critical reading of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Annals of Applied Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject TSWV es_ES
dc.subject Tospovirus, Bunyaviridae es_ES
dc.subject Plant breeding es_ES
dc.subject Pepper es_ES
dc.subject Kaplan-Meier es_ES
dc.subject Fitness es_ES
dc.subject Resistance es_ES
dc.subject RNA SILENCING SUPPRESSOR es_ES
dc.subject Mosaic-virus es_ES
dc.title A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/aab.12229
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00047-C02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2008-00010-C03-01/ES/Diversidad genética y factores evolutivos y epidemiológicos implicados en los aislados españoles de TSWV que superan las resistencias genéticas Sw-5 de tomate y Tsw de pimiento/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Soler Aleixandre, S.; Debreczeni, DE.; Vidal, E.; Aramburu, J.; López Del Rincón, C.; Galipienso Torregrosa, L.; Rubio Miguelez, L. (2015). A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus. Annals of Applied Biology. 167:343-353. https://doi.org/10.1111/aab.12229 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1111/aab.12229 es_ES
dc.description.upvformatpinicio 343 es_ES
dc.description.upvformatpfin 353 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 167 es_ES
dc.relation.senia 294919 es_ES
dc.identifier.eissn 1744-7348
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references ALIZON, S., HURFORD, A., MIDEO, N., & VAN BAALEN, M. (2008). Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology, 22(2), 245-259. doi:10.1111/j.1420-9101.2008.01658.x es_ES
dc.description.references Boiteux, L. S. (1995). Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics, 90(1), 146-149. doi:10.1007/bf00221009 es_ES
dc.description.references Boiteux, L. S. (1993). Susceptibility of Capsicum chinense PI 159236 to Tomato Spotted Wilt Virus Isolates in Brazil. Plant Disease, 77(2), 210F. doi:10.1094/pd-77-0210f es_ES
dc.description.references Chain, F., Riault, G., Trottet, M., & Jacquot, E. (2006). Evaluation of the durability of the Barley yellow dwarf virus-resistant Zhong ZH and TC14 wheat lines. European Journal of Plant Pathology, 117(1), 35-43. doi:10.1007/s10658-006-9066-8 es_ES
dc.description.references Clark, M. F., & Adams, A. N. (1977). Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. Journal of General Virology, 34(3), 475-483. doi:10.1099/0022-1317-34-3-475 es_ES
dc.description.references Debreczeni, D. E., Ruiz-Ruiz, S., Aramburu, J., López, C., Belliure, B., Galipienso, L., … Rubio, L. (2011). Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan®MGB probes. Journal of Virological Methods, 176(1-2), 32-37. doi:10.1016/j.jviromet.2011.05.027 es_ES
dc.description.references Debreczeni, D. E., Rubio, L., Aramburu, J., López, C., Galipienso, L., Soler, S., & Belliure, B. (2013). Transmission ofTomato spotted wilt virusisolates able and unable to overcome tomato or pepper resistance by its vectorFrankliniella occidentalis. Annals of Applied Biology, 164(2), 182-189. doi:10.1111/aab.12090 es_ES
dc.description.references Desbiez, C., Gal-On, A., Girard, M., Wipf-Scheibel, C., & Lecoq, H. (2003). Increase inZucchini yellow mosaic virusSymptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is Associated with a Loss of Relative Fitness on Susceptible Plants. Phytopathology, 93(12), 1478-1484. doi:10.1094/phyto.2003.93.12.1478 es_ES
dc.description.references Galipienso, L., Janssen, D., Rubio, L., Aramburu, J., & Velasco, L. (2013). Cucumber vein yellowing virus isolate-specific expression of symptoms and viral RNA accumulation in susceptible and resistant cucumber cultivars. Crop Protection, 43, 141-145. doi:10.1016/j.cropro.2012.08.004 es_ES
dc.description.references García-Arenal, F., & McDonald, B. A. (2003). An Analysis of the Durability of Resistance to Plant Viruses. Phytopathology, 93(8), 941-952. doi:10.1094/phyto.2003.93.8.941 es_ES
dc.description.references De Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA Segment of Tomato Spotted Wilt Virus has an Ambisense Character. Journal of General Virology, 71(5), 1001-1007. doi:10.1099/0022-1317-71-5-1001 es_ES
dc.description.references De Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72(9), 2207-2216. doi:10.1099/0022-1317-72-9-2207 es_ES
dc.description.references Hillung, J., Elena, S. F., & Cuevas, J. M. (2013). Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology, 13(1), 249. doi:10.1186/1471-2148-13-249 es_ES
dc.description.references Hobbs, H. A. (1994). Differences in Reactions Among Tomato Spotted Wilt Virus Isolates to Three Resistant Capsicum chinense Lines. Plant Disease, 78, 1220D. doi:10.1094/pd-78-1220d es_ES
dc.description.references Jahn, M., Paran, I., Hoffmann, K., Radwanski, E. R., Livingstone, K. D., Grube, R. C., … Moyer, J. (2000). Genetic Mapping of theTswLocus for Resistance to theTospovirus Tomato spotted wilt virusinCapsicumspp. and Its Relationship to theSw-5Gene for Resistance to the Same Pathogen in Tomato. Molecular Plant-Microbe Interactions, 13(6), 673-682. doi:10.1094/mpmi.2000.13.6.673 es_ES
dc.description.references Jenner, C. E., Wang, X., Ponz, F., & Walsh, J. A. (2002). A fitness cost for Turnip mosaic virus to overcome host resistance. Virus Research, 86(1-2), 1-6. doi:10.1016/s0168-1702(02)00031-x es_ES
dc.description.references Kaplan, E. L., & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282), 457-481. doi:10.1080/01621459.1958.10501452 es_ES
dc.description.references Lafforgue, G., Martinez, F., Sardanyes, J., de la Iglesia, F., Niu, Q.-W., Lin, S.-S., … Elena, S. F. (2011). Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance. Journal of Virology, 85(19), 9686-9695. doi:10.1128/jvi.05326-11 es_ES
dc.description.references Lecoq, H., Moury, B., Desbiez, C., Palloix, A., & Pitrat, M. (2004). Durable virus resistance in plants through conventional approaches: a challenge. Virus Research, 100(1), 31-39. doi:10.1016/j.virusres.2003.12.012 es_ES
dc.description.references Lewandowski, D. J., & Adkins, S. (2005). The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology, 342(1), 26-37. doi:10.1016/j.virol.2005.06.050 es_ES
dc.description.references Li, W., Lewandowski, D. J., Hilf, M. E., & Adkins, S. (2009). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 390(1), 110-121. doi:10.1016/j.virol.2009.04.027 es_ES
dc.description.references Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2010). Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. Journal of General Virology, 92(1), 210-215. doi:10.1099/vir.0.026708-0 es_ES
dc.description.references Mackay, I. M. (2002). Real-time PCR in virology. Nucleic Acids Research, 30(6), 1292-1305. doi:10.1093/nar/30.6.1292 es_ES
dc.description.references Margaria, P., Ciuffo, M., Pacifico, D., & Turina, M. (2007). Evidence That the Nonstructural Protein of Tomato spotted wilt virus Is the Avirulence Determinant in the Interaction with Resistant Pepper Carrying the Tsw Gene. Molecular Plant-Microbe Interactions, 20(5), 547-558. doi:10.1094/mpmi-20-5-0547 es_ES
dc.description.references Moury, B., & Verdin, E. (2012). Viruses of Pepper Crops in the Mediterranean Basin. Viruses and Virus Diseases of Vegetables in the Mediterranean Basin, 127-162. doi:10.1016/b978-0-12-394314-9.00004-x es_ES
dc.description.references Moury, B., Selassie, K. G., Marchoux, G., Daubèze, A.-M., & Palloix, A. (1998). European Journal of Plant Pathology, 104(5), 489-498. doi:10.1023/a:1008618022144 es_ES
dc.description.references Moya, A., Holmes, E. C., & González-Candelas, F. (2004). The population genetics and evolutionary epidemiology of RNA viruses. Nature Reviews Microbiology, 2(4), 279-288. doi:10.1038/nrmicro863 es_ES
dc.description.references Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531-539. doi:10.1038/nrg2603 es_ES
dc.description.references Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141(2), 219-236. doi:10.1016/j.virusres.2009.01.009 es_ES
dc.description.references Peiró, A., Cañizares, M. C., Rubio, L., López, C., Moriones, E., Aramburu, J., & Sánchez-Navarro, J. (2014). The movement protein (NSm) ofTomato spotted wilt virusis the avirulence determinant in the tomatoSw-5gene-based resistance. Molecular Plant Pathology, 15(8), 802-813. doi:10.1111/mpp.12142 es_ES
dc.description.references Peña, E. J., Ferriol, I., Sambade, A., Buschmann, H., Niehl, A., Elena, S. F., … Heinlein, M. (2014). Experimental Virus Evolution Reveals a Role of Plant Microtubule Dynamics and TORTIFOLIA1/SPIRAL2 in RNA Trafficking. PLoS ONE, 9(8), e105364. doi:10.1371/journal.pone.0105364 es_ES
dc.description.references Peto, R., & Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Procedures. Journal of the Royal Statistical Society. Series A (General), 135(2), 185. doi:10.2307/2344317 es_ES
dc.description.references Roggero, P., Masenga, V., & Tavella, L. (2002). Field Isolates of Tomato spotted wilt virus Overcoming Resistance in Pepper and Their Spread to Other Hosts in Italy. Plant Disease, 86(9), 950-954. doi:10.1094/pdis.2002.86.9.950 es_ES
dc.description.references De Ronde, D., Butterbach, P., Lohuis, D., Hedil, M., van Lent, J. W. M., & Kormelink, R. (2013). Tswgene-based resistance is triggered by a functional RNA silencing suppressor protein of theTomato spotted wilt virus. Molecular Plant Pathology, 14(4), 405-415. doi:10.1111/mpp.12016 es_ES
dc.description.references Rubio, L., Herrero, J. R., Sarrio, J., Moreno, P., & Guerri, J. (2003). A new approach to evaluate relative resistance and tolerance of tomato cultivars to begomoviruses causing the tomato yellow leaf curl disease in Spain. Plant Pathology, 52(6), 763-769. doi:10.1111/j.1365-3059.2003.00926.x es_ES
dc.description.references Sin, S.-H., McNulty, B. C., Kennedy, G. G., & Moyer, J. W. (2005). Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences, 102(14), 5168-5173. doi:10.1073/pnas.0407354102 es_ES
dc.description.references Soler, S., Díez, M. J., & Nuez, F. (1998). Effect of Temperature Regime and Growth Stage Interaction on Pattern of Virus Presence in TSWV-Resistant Accessions ofCapsicum chinense. Plant Disease, 82(11), 1199-1204. doi:10.1094/pdis.1998.82.11.1199 es_ES
dc.description.references Soler, S., Díez, M. J., Roselló, S., & Nuez, F. (1999). Movement and distribution of tomato spotted wilt virus in resistant and susceptible accessions ofCapsicumspp. Canadian Journal of Plant Pathology, 21(4), 317-325. doi:10.1080/07060669909501167 es_ES
dc.description.references Sorho, F., Pinel, A., Traoré, O., Bersoult, A., Ghesquière, A., Hébrard, E., … Fargette, D. (2005). Durability of natural and transgenic resistances in rice to Rice yellow mottle virus. European Journal of Plant Pathology, 112(4), 349-359. doi:10.1007/s10658-005-6607-5 es_ES
dc.description.references Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., … Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532(1-2), 75-79. doi:10.1016/s0014-5793(02)03632-3 es_ES
dc.description.references Tentchev, D., Verdin, E., Marchal, C., Jacquet, M., Aguilar, J. M., & Moury, B. (2010). Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. Journal of General Virology, 92(4), 961-973. doi:10.1099/vir.0.029082-0 es_ES
dc.description.references THOMAS-CARROLL, M. L., & JONES, R. A. C. (2003). Selection, biological properties and fitness of resistance-breaking strains of Tomato spotted wilt virus in pepper. Annals of Applied Biology, 142(2), 235-243. doi:10.1111/j.1744-7348.2003.tb00246.x es_ES
dc.description.references TSOMPANA, M., ABAD, J., PURUGGANAN, M., & MOYER, J. W. (2004). The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Molecular Ecology, 14(1), 53-66. doi:10.1111/j.1365-294x.2004.02392.x es_ES
dc.description.references Turina, M., Tavella, L., & Ciuffo, M. (2012). Tospoviruses in the Mediterranean Area. Viruses and Virus Diseases of Vegetables in the Mediterranean Basin, 403-437. doi:10.1016/b978-0-12-394314-9.00012-9 es_ES
dc.description.references Whitfield, A. E., Ullman, D. E., & German, T. L. (2005). Tospovirus-Thrips Interactions. Annual Review of Phytopathology, 43(1), 459-489. doi:10.1146/annurev.phyto.43.040204.140017 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem