- -

A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus

Mostrar el registro completo del ítem

Soler Aleixandre, S.; Debreczeni, DE.; Vidal, E.; Aramburu, J.; López Del Rincón, C.; Galipienso Torregrosa, L.; Rubio Miguelez, L. (2015). A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus. Annals of Applied Biology. 167:343-353. https://doi.org/10.1111/aab.12229

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63392

Ficheros en el ítem

Metadatos del ítem

Título: A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus
Autor: Soler Aleixandre, Salvador Debreczeni, Diana Elvira Vidal, Eduardo Aramburu, José López Del Rincón, Carmelo Galipienso Torregrosa, Luis Rubio Miguelez, Luis
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
[EN] Tomato spotted wilt virus (TSWV) causes economically important losses in many crops, worldwide. In pepper (Capsicum annuum), the best method for disease control has been breeding resistant cultivars by introgression ...[+]
Palabras clave: TSWV , Tospovirus, Bunyaviridae , Plant breeding , Pepper , Kaplan-Meier , Fitness , Resistance , RNA SILENCING SUPPRESSOR , Mosaic-virus
Derechos de uso: Reserva de todos los derechos
Fuente:
Annals of Applied Biology. (issn: 0003-4746 ) (eissn: 1744-7348 )
DOI: 10.1111/aab.12229
Editorial:
Wiley
Versión del editor: https://dx.doi.org/10.1111/aab.12229
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2013-00047-C02/
info:eu-repo/grantAgreement/MICINN//RTA2008-00010-C03-01/ES/Diversidad genética y factores evolutivos y epidemiológicos implicados en los aislados españoles de TSWV que superan las resistencias genéticas Sw-5 de tomate y Tsw de pimiento/
Agradecimientos:
D.E.D. was the recipient of a fellowship FPU from the Spanish Ministry of Education, Culture and Sports. This work was funded in part by INIA projects RTA2008-00010-C03 and RTA2013-00047-C02. We thank E. Lazaro and Dr. C. ...[+]
Tipo: Artículo

References

ALIZON, S., HURFORD, A., MIDEO, N., & VAN BAALEN, M. (2008). Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology, 22(2), 245-259. doi:10.1111/j.1420-9101.2008.01658.x

Boiteux, L. S. (1995). Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics, 90(1), 146-149. doi:10.1007/bf00221009

Boiteux, L. S. (1993). Susceptibility of Capsicum chinense PI 159236 to Tomato Spotted Wilt Virus Isolates in Brazil. Plant Disease, 77(2), 210F. doi:10.1094/pd-77-0210f [+]
ALIZON, S., HURFORD, A., MIDEO, N., & VAN BAALEN, M. (2008). Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology, 22(2), 245-259. doi:10.1111/j.1420-9101.2008.01658.x

Boiteux, L. S. (1995). Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics, 90(1), 146-149. doi:10.1007/bf00221009

Boiteux, L. S. (1993). Susceptibility of Capsicum chinense PI 159236 to Tomato Spotted Wilt Virus Isolates in Brazil. Plant Disease, 77(2), 210F. doi:10.1094/pd-77-0210f

Chain, F., Riault, G., Trottet, M., & Jacquot, E. (2006). Evaluation of the durability of the Barley yellow dwarf virus-resistant Zhong ZH and TC14 wheat lines. European Journal of Plant Pathology, 117(1), 35-43. doi:10.1007/s10658-006-9066-8

Clark, M. F., & Adams, A. N. (1977). Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. Journal of General Virology, 34(3), 475-483. doi:10.1099/0022-1317-34-3-475

Debreczeni, D. E., Ruiz-Ruiz, S., Aramburu, J., López, C., Belliure, B., Galipienso, L., … Rubio, L. (2011). Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan®MGB probes. Journal of Virological Methods, 176(1-2), 32-37. doi:10.1016/j.jviromet.2011.05.027

Debreczeni, D. E., Rubio, L., Aramburu, J., López, C., Galipienso, L., Soler, S., & Belliure, B. (2013). Transmission ofTomato spotted wilt virusisolates able and unable to overcome tomato or pepper resistance by its vectorFrankliniella occidentalis. Annals of Applied Biology, 164(2), 182-189. doi:10.1111/aab.12090

Desbiez, C., Gal-On, A., Girard, M., Wipf-Scheibel, C., & Lecoq, H. (2003). Increase inZucchini yellow mosaic virusSymptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is Associated with a Loss of Relative Fitness on Susceptible Plants. Phytopathology, 93(12), 1478-1484. doi:10.1094/phyto.2003.93.12.1478

Galipienso, L., Janssen, D., Rubio, L., Aramburu, J., & Velasco, L. (2013). Cucumber vein yellowing virus isolate-specific expression of symptoms and viral RNA accumulation in susceptible and resistant cucumber cultivars. Crop Protection, 43, 141-145. doi:10.1016/j.cropro.2012.08.004

García-Arenal, F., & McDonald, B. A. (2003). An Analysis of the Durability of Resistance to Plant Viruses. Phytopathology, 93(8), 941-952. doi:10.1094/phyto.2003.93.8.941

De Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA Segment of Tomato Spotted Wilt Virus has an Ambisense Character. Journal of General Virology, 71(5), 1001-1007. doi:10.1099/0022-1317-71-5-1001

De Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72(9), 2207-2216. doi:10.1099/0022-1317-72-9-2207

Hillung, J., Elena, S. F., & Cuevas, J. M. (2013). Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology, 13(1), 249. doi:10.1186/1471-2148-13-249

Hobbs, H. A. (1994). Differences in Reactions Among Tomato Spotted Wilt Virus Isolates to Three Resistant Capsicum chinense Lines. Plant Disease, 78, 1220D. doi:10.1094/pd-78-1220d

Jahn, M., Paran, I., Hoffmann, K., Radwanski, E. R., Livingstone, K. D., Grube, R. C., … Moyer, J. (2000). Genetic Mapping of theTswLocus for Resistance to theTospovirus Tomato spotted wilt virusinCapsicumspp. and Its Relationship to theSw-5Gene for Resistance to the Same Pathogen in Tomato. Molecular Plant-Microbe Interactions, 13(6), 673-682. doi:10.1094/mpmi.2000.13.6.673

Jenner, C. E., Wang, X., Ponz, F., & Walsh, J. A. (2002). A fitness cost for Turnip mosaic virus to overcome host resistance. Virus Research, 86(1-2), 1-6. doi:10.1016/s0168-1702(02)00031-x

Kaplan, E. L., & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282), 457-481. doi:10.1080/01621459.1958.10501452

Lafforgue, G., Martinez, F., Sardanyes, J., de la Iglesia, F., Niu, Q.-W., Lin, S.-S., … Elena, S. F. (2011). Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance. Journal of Virology, 85(19), 9686-9695. doi:10.1128/jvi.05326-11

Lecoq, H., Moury, B., Desbiez, C., Palloix, A., & Pitrat, M. (2004). Durable virus resistance in plants through conventional approaches: a challenge. Virus Research, 100(1), 31-39. doi:10.1016/j.virusres.2003.12.012

Lewandowski, D. J., & Adkins, S. (2005). The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology, 342(1), 26-37. doi:10.1016/j.virol.2005.06.050

Li, W., Lewandowski, D. J., Hilf, M. E., & Adkins, S. (2009). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 390(1), 110-121. doi:10.1016/j.virol.2009.04.027

Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2010). Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. Journal of General Virology, 92(1), 210-215. doi:10.1099/vir.0.026708-0

Mackay, I. M. (2002). Real-time PCR in virology. Nucleic Acids Research, 30(6), 1292-1305. doi:10.1093/nar/30.6.1292

Margaria, P., Ciuffo, M., Pacifico, D., & Turina, M. (2007). Evidence That the Nonstructural Protein of Tomato spotted wilt virus Is the Avirulence Determinant in the Interaction with Resistant Pepper Carrying the Tsw Gene. Molecular Plant-Microbe Interactions, 20(5), 547-558. doi:10.1094/mpmi-20-5-0547

Moury, B., & Verdin, E. (2012). Viruses of Pepper Crops in the Mediterranean Basin. Viruses and Virus Diseases of Vegetables in the Mediterranean Basin, 127-162. doi:10.1016/b978-0-12-394314-9.00004-x

Moury, B., Selassie, K. G., Marchoux, G., Daubèze, A.-M., & Palloix, A. (1998). European Journal of Plant Pathology, 104(5), 489-498. doi:10.1023/a:1008618022144

Moya, A., Holmes, E. C., & González-Candelas, F. (2004). The population genetics and evolutionary epidemiology of RNA viruses. Nature Reviews Microbiology, 2(4), 279-288. doi:10.1038/nrmicro863

Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531-539. doi:10.1038/nrg2603

Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141(2), 219-236. doi:10.1016/j.virusres.2009.01.009

Peiró, A., Cañizares, M. C., Rubio, L., López, C., Moriones, E., Aramburu, J., & Sánchez-Navarro, J. (2014). The movement protein (NSm) ofTomato spotted wilt virusis the avirulence determinant in the tomatoSw-5gene-based resistance. Molecular Plant Pathology, 15(8), 802-813. doi:10.1111/mpp.12142

Peña, E. J., Ferriol, I., Sambade, A., Buschmann, H., Niehl, A., Elena, S. F., … Heinlein, M. (2014). Experimental Virus Evolution Reveals a Role of Plant Microtubule Dynamics and TORTIFOLIA1/SPIRAL2 in RNA Trafficking. PLoS ONE, 9(8), e105364. doi:10.1371/journal.pone.0105364

Peto, R., & Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Procedures. Journal of the Royal Statistical Society. Series A (General), 135(2), 185. doi:10.2307/2344317

Roggero, P., Masenga, V., & Tavella, L. (2002). Field Isolates of Tomato spotted wilt virus Overcoming Resistance in Pepper and Their Spread to Other Hosts in Italy. Plant Disease, 86(9), 950-954. doi:10.1094/pdis.2002.86.9.950

De Ronde, D., Butterbach, P., Lohuis, D., Hedil, M., van Lent, J. W. M., & Kormelink, R. (2013). Tswgene-based resistance is triggered by a functional RNA silencing suppressor protein of theTomato spotted wilt virus. Molecular Plant Pathology, 14(4), 405-415. doi:10.1111/mpp.12016

Rubio, L., Herrero, J. R., Sarrio, J., Moreno, P., & Guerri, J. (2003). A new approach to evaluate relative resistance and tolerance of tomato cultivars to begomoviruses causing the tomato yellow leaf curl disease in Spain. Plant Pathology, 52(6), 763-769. doi:10.1111/j.1365-3059.2003.00926.x

Sin, S.-H., McNulty, B. C., Kennedy, G. G., & Moyer, J. W. (2005). Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences, 102(14), 5168-5173. doi:10.1073/pnas.0407354102

Soler, S., Díez, M. J., & Nuez, F. (1998). Effect of Temperature Regime and Growth Stage Interaction on Pattern of Virus Presence in TSWV-Resistant Accessions ofCapsicum chinense. Plant Disease, 82(11), 1199-1204. doi:10.1094/pdis.1998.82.11.1199

Soler, S., Díez, M. J., Roselló, S., & Nuez, F. (1999). Movement and distribution of tomato spotted wilt virus in resistant and susceptible accessions ofCapsicumspp. Canadian Journal of Plant Pathology, 21(4), 317-325. doi:10.1080/07060669909501167

Sorho, F., Pinel, A., Traoré, O., Bersoult, A., Ghesquière, A., Hébrard, E., … Fargette, D. (2005). Durability of natural and transgenic resistances in rice to Rice yellow mottle virus. European Journal of Plant Pathology, 112(4), 349-359. doi:10.1007/s10658-005-6607-5

Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., … Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532(1-2), 75-79. doi:10.1016/s0014-5793(02)03632-3

Tentchev, D., Verdin, E., Marchal, C., Jacquet, M., Aguilar, J. M., & Moury, B. (2010). Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. Journal of General Virology, 92(4), 961-973. doi:10.1099/vir.0.029082-0

THOMAS-CARROLL, M. L., & JONES, R. A. C. (2003). Selection, biological properties and fitness of resistance-breaking strains of Tomato spotted wilt virus in pepper. Annals of Applied Biology, 142(2), 235-243. doi:10.1111/j.1744-7348.2003.tb00246.x

TSOMPANA, M., ABAD, J., PURUGGANAN, M., & MOYER, J. W. (2004). The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Molecular Ecology, 14(1), 53-66. doi:10.1111/j.1365-294x.2004.02392.x

Turina, M., Tavella, L., & Ciuffo, M. (2012). Tospoviruses in the Mediterranean Area. Viruses and Virus Diseases of Vegetables in the Mediterranean Basin, 403-437. doi:10.1016/b978-0-12-394314-9.00012-9

Whitfield, A. E., Ullman, D. E., & German, T. L. (2005). Tospovirus-Thrips Interactions. Annual Review of Phytopathology, 43(1), 459-489. doi:10.1146/annurev.phyto.43.040204.140017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem