Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., & Ma, L. (2014). An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource Technology, 154, 10-17. doi:10.1016/j.biortech.2013.12.020
Nanayakkara, S., Patti, A. F., & Saito, K. (2014). Lignin Depolymerization with Phenol via Redistribution Mechanism in Ionic Liquids. ACS Sustainable Chemistry & Engineering, 2(9), 2159-2164. doi:10.1021/sc5003424
Azarpira, A., Ralph, J., & Lu, F. (2013). Catalytic Alkaline Oxidation of Lignin and its Model Compounds: a Pathway to Aromatic Biochemicals. BioEnergy Research, 7(1), 78-86. doi:10.1007/s12155-013-9348-x
[+]
Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., & Ma, L. (2014). An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource Technology, 154, 10-17. doi:10.1016/j.biortech.2013.12.020
Nanayakkara, S., Patti, A. F., & Saito, K. (2014). Lignin Depolymerization with Phenol via Redistribution Mechanism in Ionic Liquids. ACS Sustainable Chemistry & Engineering, 2(9), 2159-2164. doi:10.1021/sc5003424
Azarpira, A., Ralph, J., & Lu, F. (2013). Catalytic Alkaline Oxidation of Lignin and its Model Compounds: a Pathway to Aromatic Biochemicals. BioEnergy Research, 7(1), 78-86. doi:10.1007/s12155-013-9348-x
Crestini, C., Crucianelli, M., Orlandi, M., & Saladino, R. (2010). Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catalysis Today, 156(1-2), 8-22. doi:10.1016/j.cattod.2010.03.057
Rahimi, A., Azarpira, A., Kim, H., Ralph, J., & Stahl, S. S. (2013). Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin. Journal of the American Chemical Society, 135(17), 6415-6418. doi:10.1021/ja401793n
Gao, Y., Zhang, J., Chen, X., Ma, D., & Yan, N. (2014). A Metal-Free, Carbon-Based Catalytic System for the Oxidation of Lignin Model Compounds and Lignin. ChemPlusChem, 79(6), 825-834. doi:10.1002/cplu.201300439
Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347
Son, S., & Toste, F. D. (2010). Non-Oxidative Vanadium-Catalyzed CO Bond Cleavage: Application to Degradation of Lignin Model Compounds. Angewandte Chemie, 122(22), 3879-3882. doi:10.1002/ange.201001293
Hanson, S. K., Baker, R. T., Gordon, J. C., Scott, B. L., & Thorn, D. L. (2010). Aerobic Oxidation of Lignin Models Using a Base Metal Vanadium Catalyst. Inorganic Chemistry, 49(12), 5611-5618. doi:10.1021/ic100528n
Crestini, C., Caponi, M. C., Argyropoulos, D. S., & Saladino, R. (2006). Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. Bioorganic & Medicinal Chemistry, 14(15), 5292-5302. doi:10.1016/j.bmc.2006.03.046
Badamali, S. K., Luque, R., Clark, J. H., & Breeden, S. W. (2011). Co(salen)/SBA-15 catalysed oxidation of a β-O-4 phenolic dimer under microwave irradiation. Catalysis Communications, 12(11), 993-995. doi:10.1016/j.catcom.2011.02.025
Biannic, B., & Bozell, J. J. (2013). Efficient Cobalt-Catalyzed Oxidative Conversion of Lignin Models to Benzoquinones. Organic Letters, 15(11), 2730-2733. doi:10.1021/ol401065r
Luo, J., Peng, F., Wang, H., & Yu, H. (2013). Enhancing the catalytic activity of carbon nanotubes by nitrogen doping in the selective liquid phase oxidation of benzyl alcohol. Catalysis Communications, 39, 44-49. doi:10.1016/j.catcom.2013.04.030
Gale, D., & Wilshire, J. (1974). The periodate oxidation of some Cycloalk[b]indoles and their N-methyl derivatives: Effect of ring size on the spectral and chemical properties of the resultant lactams. Australian Journal of Chemistry, 27(6), 1295. doi:10.1071/ch9741295c
Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017
Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653
Jin, M., Jeong, H.-K., Kim, T.-H., So, K. P., Cui, Y., Yu, W. J., … Lee, Y. H. (2010). Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature. Journal of Physics D: Applied Physics, 43(27), 275402. doi:10.1088/0022-3727/43/27/275402
Meng, L. Y., & Park, S. J. (2010). Synthesis of Graphene Nanosheets via Thermal Exfoliation of Pretreated Graphite at Low Temperature. Advanced Materials Research, 123-125, 787-790. doi:10.4028/www.scientific.net/amr.123-125.787
Zangmeister, C. D. (2010). Preparation and Evaluation of Graphite Oxide Reduced at 220 °C. Chemistry of Materials, 22(19), 5625-5629. doi:10.1021/cm102005m
Ma, R., Guo, M., & Zhang, X. (2014). Selective Conversion of Biorefinery Lignin into Dicarboxylic Acids. ChemSusChem, 7(2), 412-415. doi:10.1002/cssc.201300964
Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g
Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068
Primo, A., Navalón, S., Asiri, A. M., & García, H. (2014). Chitosan-Templated Synthesis of Few-Layers Boron Nitride and its Unforeseen Activity as a Fenton Catalyst. Chemistry - A European Journal, 21(1), 324-330. doi:10.1002/chem.201405469
Boukhvalov, D. W., Dreyer, D. R., Bielawski, C. W., & Son, Y. (2012). A Computational Investigation of the Catalytic Properties of Graphene Oxide: Exploring Mechanisms by using DFT Methods. ChemCatChem, 4(11), 1844-1849. doi:10.1002/cctc.201200210
Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j
Dhakshinamoorthy, A., Alvaro, M., Concepción, P., Fornés, V., & Garcia, H. (2012). Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chemical Communications, 48(44), 5443. doi:10.1039/c2cc31385e
Dhakshinamoorthy, A., Alvaro, M., Puche, M., Fornes, V., & Garcia, H. (2012). Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature. ChemCatChem, 4(12), 2026-2030. doi:10.1002/cctc.201200461
Wang, H., Deng, T., Wang, Y., Cui, X., Qi, Y., Mu, X., … Zhu, Y. (2013). Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chemistry, 15(9), 2379. doi:10.1039/c3gc41109e
Ambrosi, A., Chee, S. Y., Khezri, B., Webster, R. D., Sofer, Z., & Pumera, M. (2011). Metallic Impurities in Graphenes Prepared from Graphite Can Dramatically Influence Their Properties. Angewandte Chemie International Edition, 51(2), 500-503. doi:10.1002/anie.201106917
Ambrosi, A., Chee, S. Y., Khezri, B., Webster, R. D., Sofer, Z., & Pumera, M. (2011). Metallic Impurities in Graphenes Prepared from Graphite Can Dramatically Influence Their Properties. Angewandte Chemie, 124(2), 515-518. doi:10.1002/ange.201106917
Wong, C. H. A., Sofer, Z., Kube ova, M., Ku era, J., Mat jkova, S., & Pumera, M. (2014). Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proceedings of the National Academy of Sciences, 111(38), 13774-13779. doi:10.1073/pnas.1413389111
Zakzeski, J., Jongerius, A. L., & Weckhuysen, B. M. (2010). Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chemistry, 12(7), 1225. doi:10.1039/c001389g
Cox, B. J., Jia, S., Zhang, Z. C., & Ekerdt, J. G. (2011). Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: Hammett acidity and anion effects. Polymer Degradation and Stability, 96(4), 426-431. doi:10.1016/j.polymdegradstab.2011.01.011
Mirza-Aghayan, M., Kashef-Azar, E., & Boukherroub, R. (2012). Graphite oxide: an efficient reagent for oxidation of alcohols under sonication. Tetrahedron Letters, 53(37), 4962-4965. doi:10.1016/j.tetlet.2012.07.016
Navalon, S., Alvaro, M., & Garcia, H. (2009). Chlorine dioxide reaction with selected amino acids in water. Journal of Hazardous Materials, 164(2-3), 1089-1097. doi:10.1016/j.jhazmat.2008.09.010
[-]