- -

Quantitative trait loci affecting reproductive phenology in peach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantitative trait loci affecting reproductive phenology in peach

Mostrar el registro completo del ítem

Romeu, J.; Monforte Gilabert, AJ.; Sánchez, G.; Granell Richart, A.; Garcia-Brunton, J.; Badenes, M.; Rios Garcia, G. (2014). Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biology. 14(52):1-16. https://doi.org/10.1186/1471-2229-14-52

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63981

Ficheros en el ítem

Metadatos del ítem

Título: Quantitative trait loci affecting reproductive phenology in peach
Autor: Romeu, JF Monforte Gilabert, Antonio José Sánchez, Gerardo Granell Richart, Antonio Garcia-Brunton, J Badenes, M.L. Rios Garcia, Gabino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
Background: The reproductive phenology of perennial plants in temperate climates is largely conditioned by the duration of bud dormancy, and fruit developmental processes. Bud dormancy release and bud break depends on the ...[+]
Palabras clave: Prunus persica , Bud dormancy , Chilling requirement , Heat requirement , Flowering , Fruit maturation , QTL
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Plant Biology. (issn: 1471-2229 )
DOI: 10.1186/1471-2229-14-52
Editorial:
BioMed Central
Versión del editor: http://dx.doi.org/10.1186/1471-2229-14-52
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//RTA2007-00060-00-00/ES/MEJORA GENÉTICA Y SANITARIA DEL MELOCOTONERO, CON ESPECIAL REFERENCIA A LA CALIDAD DE LA FRUTA/
info:eu-repo/grantAgreement/MICINN//AGL2010-20595/ES/PROGRAMAS DE MEJORA DEL ALBARICOQUERO Y MELOCOTONERO PARA LA OBTENCION Y SELECCION DE NUEVAS VARIEDADES DE ALTA CALIDAD. DESARROLLO DE HERRAMIENTAS GENETICAS Y GENOMICAS/
Agradecimientos:
We thank Matilde Gonzalez for technical assistance. This work was supported by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)-FEDER (grant no. RTA2007-00060), and the Ministry of Science ...[+]
Tipo: Artículo

References

Rohde, A., & Bhalerao, R. P. (2007). Plant dormancy in the perennial context. Trends in Plant Science, 12(5), 217-223. doi:10.1016/j.tplants.2007.03.012

Coville, F. V. (1920). The Influence of Cold in Stimulating the Growth of Plants. Proceedings of the National Academy of Sciences, 6(7), 434-435. doi:10.1073/pnas.6.7.434

Chuine, I. (2010). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3149-3160. doi:10.1098/rstb.2010.0142 [+]
Rohde, A., & Bhalerao, R. P. (2007). Plant dormancy in the perennial context. Trends in Plant Science, 12(5), 217-223. doi:10.1016/j.tplants.2007.03.012

Coville, F. V. (1920). The Influence of Cold in Stimulating the Growth of Plants. Proceedings of the National Academy of Sciences, 6(7), 434-435. doi:10.1073/pnas.6.7.434

Chuine, I. (2010). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3149-3160. doi:10.1098/rstb.2010.0142

Hänninen, H., & Tanino, K. (2011). Tree seasonality in a warming climate. Trends in Plant Science, 16(8), 412-416. doi:10.1016/j.tplants.2011.05.001

Yu, H., Luedeling, E., & Xu, J. (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 107(51), 22151-22156. doi:10.1073/pnas.1012490107

Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., … van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684-692. doi:10.1016/j.tplants.2010.09.008

Rohde, A., Storme, V., Jorge, V., Gaudet, M., Vitacolonna, N., Fabbrini, F., … Bastien, C. (2010). Bud set in poplar - genetic dissection of a complex trait in natural and hybrid populations. New Phytologist, 189(1), 106-121. doi:10.1111/j.1469-8137.2010.03469.x

Fabbrini, F., Gaudet, M., Bastien, C., Zaina, G., Harfouche, A., Beritognolo, I., … Sabatti, M. (2012). Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar. BMC Plant Biology, 12(1), 47. doi:10.1186/1471-2229-12-47

Celton, J.-M., Martinez, S., Jammes, M.-J., Bechti, A., Salvi, S., Legave, J.-M., & Costes, E. (2011). Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytologist, 192(2), 378-392. doi:10.1111/j.1469-8137.2011.03823.x

Quilot, B., Wu, B. H., Kervella, J., G�nard, M., Foulongne, M., & Moreau, K. (2004). QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theoretical and Applied Genetics, 109(4), 884-897. doi:10.1007/s00122-004-1703-z

Dirlewanger, E., Quero-García, J., Le Dantec, L., Lambert, P., Ruiz, D., Dondini, L., … Arús, P. (2012). Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity, 109(5), 280-292. doi:10.1038/hdy.2012.38

Olukolu, B. A., Trainin, T., Fan, S., Kole, C., Bielenberg, D. G., Reighard, G. L., … Holland, D. (2009). Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniacaL.). Genome, 52(10), 819-828. doi:10.1139/g09-050

Fan, S., Bielenberg, D. G., Zhebentyayeva, T. N., Reighard, G. L., Okie, W. R., Holland, D., & Abbott, A. G. (2009). Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytologist, 185(4), 917-930. doi:10.1111/j.1469-8137.2009.03119.x

Jiménez, S., Li, Z., Reighard, G. L., & Bielenberg, D. G. (2010). Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biology, 10(1), 25. doi:10.1186/1471-2229-10-25

Verde, I., Bassil, N., Scalabrin, S., Gilmore, B., Lawley, C. T., Gasic, K., … Peace, C. (2012). Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm. PLoS ONE, 7(4), e35668. doi:10.1371/journal.pone.0035668

Leida, C., Terol, J., Marti, G., Agusti, M., Llacer, G., Badenes, M. L., & Rios, G. (2010). Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiology, 30(5), 655-666. doi:10.1093/treephys/tpq008

Leida, C., Conesa, A., Llácer, G., Badenes, M. L., & Ríos, G. (2011). Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytologist, 193(1), 67-80. doi:10.1111/j.1469-8137.2011.03863.x

Holec, S., & Berger, F. (2011). Polycomb Group Complexes Mediate Developmental Transitions in Plants. Plant Physiology, 158(1), 35-43. doi:10.1104/pp.111.186445

Pandey, R. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research, 30(23), 5036-5055. doi:10.1093/nar/gkf660

Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586

Jiménez, S., Lawton-Rauh, A. L., Reighard, G. L., Abbott, A. G., & Bielenberg, D. G. (2009). Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biology, 9(1), 81. doi:10.1186/1471-2229-9-81

Li, Z., Reighard, G. L., Abbott, A. G., & Bielenberg, D. G. (2009). Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. Journal of Experimental Botany, 60(12), 3521-3530. doi:10.1093/jxb/erp195

Jiménez, S., Reighard, G. L., & Bielenberg, D. G. (2010). Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Molecular Biology, 73(1-2), 157-167. doi:10.1007/s11103-010-9608-5

Yamane, H., Ooka, T., Jotatsu, H., Hosaka, Y., Sasaki, R., & Tao, R. (2011). Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. Journal of Experimental Botany, 62(10), 3481-3488. doi:10.1093/jxb/err028

Leida, C., Conejero, A., Arbona, V., Gómez-Cadenas, A., Llácer, G., Badenes, M. L., & Ríos, G. (2012). Chilling-Dependent Release of Seed and Bud Dormancy in Peach Associates to Common Changes in Gene Expression. PLoS ONE, 7(5), e35777. doi:10.1371/journal.pone.0035777

Horvath, D. P., Sung, S., Kim, D., Chao, W., & Anderson, J. (2010). Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Molecular Biology, 73(1-2), 169-179. doi:10.1007/s11103-009-9596-5

Sasaki, R., Yamane, H., Ooka, T., Jotatsu, H., Kitamura, Y., Akagi, T., & Tao, R. (2011). Functional and Expressional Analyses of PmDAM Genes Associated with Endodormancy in Japanese Apricot. Plant Physiology, 157(1), 485-497. doi:10.1104/pp.111.181982

Hemming, M. N., & Trevaskis, B. (2011). Make hay when the sun shines: The role of MADS-box genes in temperature-dependant seasonal flowering responses. Plant Science, 180(3), 447-453. doi:10.1016/j.plantsci.2010.12.001

He, Y. (2012). Chromatin regulation of flowering. Trends in Plant Science, 17(9), 556-562. doi:10.1016/j.tplants.2012.05.001

Santamaría, M., Hasbún, R., Valera, M., Meijón, M., Valledor, L., Rodríguez, J. L., … Rodríguez, R. (2009). Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. Journal of Plant Physiology, 166(13), 1360-1369. doi:10.1016/j.jplph.2009.02.014

Santamaría, M. E., Rodríguez, R., Cañal, M. J., & Toorop, P. E. (2011). Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Annals of Botany, 108(3), 485-498. doi:10.1093/aob/mcr185

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122

Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x

Horvath, D. P., Anderson, J. V., Chao, W. S., & Foley, M. E. (2003). Knowing when to grow: signals regulating bud dormancy. Trends in Plant Science, 8(11), 534-540. doi:10.1016/j.tplants.2003.09.013

Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., … Rohde, A. (2007). A Molecular Timetable for Apical Bud Formation and Dormancy Induction in Poplar. The Plant Cell, 19(8), 2370-2390. doi:10.1105/tpc.107.052811

Melzer, S., Kampmann, G., Chandler, J., & Apel, K. (1999). FPF1 modulates the competence to flowering in Arabidopsis. The Plant Journal, 18(4), 395-405. doi:10.1046/j.1365-313x.1999.00461.x

Schubert, D., Primavesi, L., Bishopp, A., Roberts, G., Doonan, J., Jenuwein, T., & Goodrich, J. (2006). Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. The EMBO Journal, 25(19), 4638-4649. doi:10.1038/sj.emboj.7601311

Zemach, A., Kim, M. Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., … Zilberman, D. (2013). The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. Cell, 153(1), 193-205. doi:10.1016/j.cell.2013.02.033

Sridha, S., & Wu, K. (2006). Identification ofAtHD2Cas a novel regulator of abscisic acid responses in Arabidopsis. The Plant Journal, 46(1), 124-133. doi:10.1111/j.1365-313x.2006.02678.x

Kim, D.-H., & Sung, S. (2010). The Plant Homeo Domain finger protein, VIN3-LIKE 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor, MAF5. Proceedings of the National Academy of Sciences, 107(39), 17029-17034. doi:10.1073/pnas.1010834107

Jiang, D., Kong, N. C., Gu, X., Li, Z., & He, Y. (2011). Arabidopsis COMPASS-Like Complexes Mediate Histone H3 Lysine-4 Trimethylation to Control Floral Transition and Plant Development. PLoS Genetics, 7(3), e1001330. doi:10.1371/journal.pgen.1001330

Lu, F., Cui, X., Zhang, S., Jenuwein, T., & Cao, X. (2011). Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nature Genetics, 43(7), 715-719. doi:10.1038/ng.854

Yu, C.-W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., … Wu, K. (2011). HISTONE DEACETYLASE6 Interacts with FLOWERING LOCUS D and Regulates Flowering in Arabidopsis. Plant Physiology, 156(1), 173-184. doi:10.1104/pp.111.174417

Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. doi:10.1016/0092-8674(92)90295-n

Yang, Z., Tian, L., Latoszek-Green, M., Brown, D., & Wu, K. (2005). Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology, 58(4), 585-596. doi:10.1007/s11103-005-7294-5

Bonghi, C., Trainotti, L., Botton, A., Tadiello, A., Rasori, A., Ziliotto, F., … Ramina, A. (2011). A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biology, 11(1), 107. doi:10.1186/1471-2229-11-107

Wang, A., Tan, D., Takahashi, A., Zhong Li, T., & Harada, T. (2007). MdERFs, two ethylene-response factors involved in apple fruit ripening. Journal of Experimental Botany, 58(13), 3743-3748. doi:10.1093/jxb/erm224

Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A. J., King, G. J., … Seymour, G. B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 38(8), 948-952. doi:10.1038/ng1841

Pirona, R., Eduardo, I., Pacheco, I., Da Silva Linge, C., Miculan, M., Verde, I., … Rossini, L. (2013). Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biology, 13(1), 166. doi:10.1186/1471-2229-13-166

Maruyama-Nakashita, A., Nakamura, Y., Tohge, T., Saito, K., & Takahashi, H. (2006). Arabidopsis SLIM1 Is a Central Transcriptional Regulator of Plant Sulfur Response and Metabolism. The Plant Cell, 18(11), 3235-3251. doi:10.1105/tpc.106.046458

Seymour, G., Poole, M., Manning, K., & King, G. J. (2008). Genetics and epigenetics of fruit development and ripening. Current Opinion in Plant Biology, 11(1), 58-63. doi:10.1016/j.pbi.2007.09.003

Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992

Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3

Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78. doi:10.1093/jhered/93.1.77

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem