- -

Fibrin coating on poly (L-lactide) scaffolds for tissue engineering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fibrin coating on poly (L-lactide) scaffolds for tissue engineering

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gamboa Martínez, Tatiana Carolina es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Gallego Ferrer, Gloria es_ES
dc.date.accessioned 2016-05-17T07:12:21Z
dc.date.available 2016-05-17T07:12:21Z
dc.date.issued 2011-09
dc.identifier.issn 0883-9115
dc.identifier.uri http://hdl.handle.net/10251/64167
dc.description.abstract A hybrid scaffold was obtained by the deposition of a thin network of submicron fibrin fibrils on the microporous walls of a macroporous poly(L-lactide) (PLLA) three-dimensional structure. The fibrin coating is homogeneous across the entire substrate and allowed the pore structure remain open in the hybrid scaffold. The elastic modulus of the hybrid scaffold (0.65 MPa) was increased up to twofold compared to the pure PLLA scaffold (0.29 MPa). Mouse pre-osteoblastic cells, MC3T3, were seeded on both pure PLLA and hybrid scaffolds, and cultured for 3, 6, and 24 h. The coating enhanced the cell colonization and proliferation and provided a more homogeneous distribution of cells within the scaffolds. In addition, the coating improved the scaffold adhesion properties by supplying new binding sites to the cells that modify the transmembrane receptors involved in initial cell adhesion mechanism. The expression of the ß3 integrin was observed in cells cultured on fibrin-coated scaffolds instead of the ?5 integrin, which was expressed in the uncoated scaffold. These hybrid PLLA/fibrin scaffolds have cell culture features suitable to promote early tissue regeneration. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Spanish Ministry through the DPI2007-65601-C03-03 and HP2007-0103 projects. T. Gamboa Martinez is grateful to the Centro de Investigacion Principe Felipe for the assistance in the use of the CLSM. G. Gallego Ferrer and J. L. Gomez Ribelles acknowledge the support by funds for research in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III (Ministry of Science and Innovation). en_EN
dc.language Inglés es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation.ispartof Journal of Bioactive and Compatible Polymers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cell adhesion es_ES
dc.subject Coating es_ES
dc.subject Fibrin es_ES
dc.subject Scaffolds es_ES
dc.subject Tissue engineering es_ES
dc.subject Adhesion mechanisms es_ES
dc.subject Adhesion properties es_ES
dc.subject Cell colonization es_ES
dc.subject Homogeneous distribution es_ES
dc.subject Hybrid scaffolds es_ES
dc.subject Integrins es_ES
dc.subject Macroporous es_ES
dc.subject Microporous walls es_ES
dc.subject PLLA es_ES
dc.subject Poly-L-lactide es_ES
dc.subject Scaffolds for tissue engineering es_ES
dc.subject Submicron es_ES
dc.subject Three-dimensional structure es_ES
dc.subject Tissue regeneration es_ES
dc.subject Transmembrane receptors es_ES
dc.subject Adhesion es_ES
dc.subject Binding sites es_ES
dc.subject Cell culture es_ES
dc.subject Cells es_ES
dc.subject Coatings es_ES
dc.subject Mammals es_ES
dc.subject Tissue es_ES
dc.subject Scaffolds (biology) es_ES
dc.subject Beta3 integrin es_ES
dc.subject Membrane receptor es_ES
dc.subject Poly(levo lactide) es_ES
dc.subject Tissue scaffold es_ES
dc.subject Unclassified drug es_ES
dc.subject Article es_ES
dc.subject Binding site es_ES
dc.subject Cell proliferation es_ES
dc.subject Immunofluorescence test es_ES
dc.subject Osteoblast es_ES
dc.subject Protein expression es_ES
dc.subject Scanning electron microscopy es_ES
dc.subject Stress strain relationship es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Fibrin coating on poly (L-lactide) scaffolds for tissue engineering es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0883911511419834
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2007-65601-C03-03/ES/DISEÑO DE NUEVOS CONSTRUCTOS POLIMERICOS BIODEGRADABLES PARA LA REGENRACION OSTEOCONDRAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//HP2007-0103/ES/HP2007-0103/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Gamboa Martínez, TC.; Gómez Ribelles, JL.; Gallego Ferrer, G. (2011). Fibrin coating on poly (L-lactide) scaffolds for tissue engineering. Journal of Bioactive and Compatible Polymers. 26(5):464-477. https://doi.org/10.1177/0883911511419834 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1177/0883911511419834 es_ES
dc.description.upvformatpinicio 464 es_ES
dc.description.upvformatpfin 477 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 211288 es_ES
dc.identifier.eissn 1530-8030
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Silver, F. H., Wang, M.-C., & Pins, G. D. (1995). Preparation and use of fibrin glue in surgery. Biomaterials, 16(12), 891-903. doi:10.1016/0142-9612(95)93113-r es_ES
dc.description.references Mol, A., van Lieshout, M. I., Dam-de Veen, C. G., Neuenschwander, S., Hoerstrup, S. P., Baaijens, F. P. T., & Bouten, C. V. C. (2005). Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 26(16), 3113-3121. doi:10.1016/j.biomaterials.2004.08.007 es_ES
dc.description.references Eyrich, D., Brandl, F., Appel, B., Wiese, H., Maier, G., Wenzel, M., … Blunk, T. (2007). Long-term stable fibrin gels for cartilage engineering. Biomaterials, 28(1), 55-65. doi:10.1016/j.biomaterials.2006.08.027 es_ES
dc.description.references Ho, S. T. B., Cool, S. M., Hui, J. H., & Hutmacher, D. W. (2010). The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 31(1), 38-47. doi:10.1016/j.biomaterials.2009.09.021 es_ES
dc.description.references Breen, A., O’Brien, T., & Pandit, A. (2009). Fibrin as a Delivery System for Therapeutic Drugs and Biomolecules. Tissue Engineering Part B: Reviews, 15(2), 201-214. doi:10.1089/ten.teb.2008.0527 es_ES
dc.description.references Ahmed, T. A. E., Dare, E. V., & Hincke, M. (2008). Fibrin: A Versatile Scaffold for Tissue Engineering Applications. Tissue Engineering Part B: Reviews, 14(2), 199-215. doi:10.1089/ten.teb.2007.0435 es_ES
dc.description.references Siebers, M. ., ter Brugge, P. ., Walboomers, X. ., & Jansen, J. . (2005). Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials, 26(2), 137-146. doi:10.1016/j.biomaterials.2004.02.021 es_ES
dc.description.references García, A. J. (s. f.). Interfaces to Control Cell-Biomaterial Adhesive Interactions. Advances in Polymer Science, 171-190. doi:10.1007/12_071 es_ES
dc.description.references Alaminos, M., Sa´nchez-Quevedo, M. D. C., Mun~oz-A´vila, J. I., Serrano, D., Medialdea, S., Carreras, I., & Campos, A. (2006). Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold. Investigative Opthalmology & Visual Science, 47(8), 3311. doi:10.1167/iovs.05-1647 es_ES
dc.description.references Han, B., Schwab, I. R., Madsen, T. K., & Isseroff, R. R. (2002). A Fibrin-based Bioengineered Ocular Surface With Human Corneal Epithelial Stem Cells. Cornea, 21(5), 505-510. doi:10.1097/00003226-200207000-00013 es_ES
dc.description.references Willerth, S. M., Arendas, K. J., Gottlieb, D. I., & Sakiyama-Elbert, S. E. (2006). Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials, 27(36), 5990-6003. doi:10.1016/j.biomaterials.2006.07.036 es_ES
dc.description.references Jockenhoevel, S., Zund, G., Hoerstrup, S. P., Chalabi, K., Sachweh, J. S., Demircan, L., … Turina, M. (2001). Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery, 19(4), 424-430. doi:10.1016/s1010-7940(01)00624-8 es_ES
dc.description.references Ye, Q., Zünd, G., Benedikt, P., Jockenhoevel, S., Hoerstrup, S. P., Sakyama, S., … Turina, M. (2000). Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery, 17(5), 587-591. doi:10.1016/s1010-7940(00)00373-0 es_ES
dc.description.references Han, C., Zhang, L., Sun, J., Shi, H., Zhou, J., & Gao, C. (2010). Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. Journal of Zhejiang University SCIENCE B, 11(7), 524-530. doi:10.1631/jzus.b0900400 es_ES
dc.description.references Eyrich, D., Wiese, H., Maier, G., Skodacek, D., Appel, B., Sarhan, H., … Blunk, T. (2007). In Vitro and In Vivo Cartilage Engineering Using a Combination of Chondrocyte-Seeded Long-Term Stable Fibrin Gels and Polycaprolactone-Based Polyurethane Scaffolds. Tissue Engineering, 13(9), 2207-2218. doi:10.1089/ten.2006.0358 es_ES
dc.description.references Karp, J. M., Sarraf, F., Shoichet, M. S., & Davies, J. E. (2004). Fibrin-filled scaffolds for bone-tissue engineering: Anin vivo study. Journal of Biomedical Materials Research, 71A(1), 162-171. doi:10.1002/jbm.a.30147 es_ES
dc.description.references Osathanon, T., Linnes, M. L., Rajachar, R. M., Ratner, B. D., Somerman, M. J., & Giachelli, C. M. (2008). Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials, 29(30), 4091-4099. doi:10.1016/j.biomaterials.2008.06.030 es_ES
dc.description.references Bensaı̈d, W., Triffitt, J. ., Blanchat, C., Oudina, K., Sedel, L., & Petite, H. (2003). A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials, 24(14), 2497-2502. doi:10.1016/s0142-9612(02)00618-x es_ES
dc.description.references Weisel, J. W. (2004). The mechanical properties of fibrin for basic scientists and clinicians. Biophysical Chemistry, 112(2-3), 267-276. doi:10.1016/j.bpc.2004.07.029 es_ES
dc.description.references Ngiam, M., Liao, S., Ong Jun Jie, T., Xiaodi Sui, Yixiang Dong, Ramakrishna, S., & Chan, C. K. (2010). Effects of mechanical stimulation in osteogenic differentiation of bone marrow-derived mesenchymal stem cells on aligned nanofibrous scaffolds. Journal of Bioactive and Compatible Polymers, 26(1), 56-70. doi:10.1177/0883911510393162 es_ES
dc.description.references Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6 es_ES
dc.description.references Babis, G. C., & Soucacos, P. N. (2005). Bone scaffolds: The role of mechanical stability and instrumentation. Injury, 36(4), S38-S44. doi:10.1016/j.injury.2005.10.009 es_ES
dc.description.references Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448 es_ES
dc.description.references Richardson, S. M., Curran, J. M., Chen, R., Vaughan-Thomas, A., Hunt, J. A., Freemont, A. J., & Hoyland, J. A. (2006). The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-l-lactic acid (PLLA) scaffolds. Biomaterials, 27(22), 4069-4078. doi:10.1016/j.biomaterials.2006.03.017 es_ES
dc.description.references Puelacher, W. C., Mooney, D., Langer, R., Upton, J., Vacanti, J. P., & Vacanti, C. A. (1994). Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Biomaterials, 15(10), 774-778. doi:10.1016/0142-9612(94)90031-0 es_ES
dc.description.references Uematsu, K., Hattori, K., Ishimoto, Y., Yamauchi, J., Habata, T., Takakura, Y., … Sato, M. (2005). Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials, 26(20), 4273-4279. doi:10.1016/j.biomaterials.2004.10.037 es_ES
dc.description.references Huang, X., Yang, D., Yan, W., Shi, Z., Feng, J., Gao, Y., … Yan, S. (2007). Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(l-lactic acid) hybrid materials. Biomaterials, 28(20), 3091-3100. doi:10.1016/j.biomaterials.2007.03.017 es_ES
dc.description.references Xiong, Z., Yan, Y., Zhang, R., & Sun, L. (2001). Fabrication of porous poly(l-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scripta Materialia, 45(7), 773-779. doi:10.1016/s1359-6462(01)01094-6 es_ES
dc.description.references Kang, Y., Yin, G., Yuan, Q., Yao, Y., Huang, Z., Liao, X., … Wang, H. (2008). Preparation of poly(l-lactic acid)/β-tricalcium phosphate scaffold for bone tissue engineering without organic solvent. Materials Letters, 62(12-13), 2029-2032. doi:10.1016/j.matlet.2007.11.014 es_ES
dc.description.references Obata, A., Hotta, T., Wakita, T., Ota, Y., & Kasuga, T. (2010). Electrospun microfiber meshes of silicon-doped vaterite/poly(lactic acid) hybrid for guided bone regeneration. Acta Biomaterialia, 6(4), 1248-1257. doi:10.1016/j.actbio.2009.11.013 es_ES
dc.description.references JUNG, Y., KIM, S., KIM, Y., KIM, S., KIM, B., KIM, S., … KIM, S. (2005). A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials, 26(32), 6314-6322. doi:10.1016/j.biomaterials.2005.04.007 es_ES
dc.description.references Park, K., Hyun Jung Jung, Kim, J.-J., & Dong Keun Han. (2010). Effect of Surface-activated PLLA Scaffold on Apatite Formation in Simulated Body Fluid. Journal of Bioactive and Compatible Polymers, 25(1), 27-39. doi:10.1177/0883911509353677 es_ES
dc.description.references Koenig, A. L., & Grainger, D. W. (2002). Cell-Synthetic Surface Interactions. Methods of Tissue Engineering, 751-770. doi:10.1016/b978-012436636-7/50181-6 es_ES
dc.description.references Ma, Z., Mao, Z., & Gao, C. (2007). Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces, 60(2), 137-157. doi:10.1016/j.colsurfb.2007.06.019 es_ES
dc.description.references Hokugo, A., Takamoto, T., & Tabata, Y. (2006). Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber. Biomaterials, 27(1), 61-67. doi:10.1016/j.biomaterials.2005.05.030 es_ES
dc.description.references Pankajakshan, D., Krishnan V, K., & Krishnan, L. K. (2007). Vascular tissue generation in response to signaling molecules integrated with a novel poly(ɛ-caprolactone)–fibrin hybrid scaffold. Journal of Tissue Engineering and Regenerative Medicine, 1(5), 389-397. doi:10.1002/term.48 es_ES
dc.description.references Xiaohong Wang, Shaochun Sui, Yongnian Yan, & Renji Zhang. (2010). Design and Fabrication of PLGA Sandwiched Cell/Fibrin Constructs for Complex Organ Regeneration. Journal of Bioactive and Compatible Polymers, 25(3), 229-240. doi:10.1177/0883911510365661 es_ES
dc.description.references Zhao, H., Ma, L., Gong, Y., Gao, C., & Shen, J. (2008). A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation. Journal of Materials Science: Materials in Medicine, 20(1), 135-143. doi:10.1007/s10856-008-3543-x es_ES
dc.description.references Beşkardeş, I. G., & Gümüşderelioğlu, M. (2009). Biomimetic Apatite-coated PCL Scaffolds: Effect of Surface Nanotopography on Cellular Functions. Journal of Bioactive and Compatible Polymers, 24(6), 507-524. doi:10.1177/0883911509349311 es_ES
dc.description.references Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2009). Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. Journal of Materials Science: Materials in Medicine, 21(1), 33-44. doi:10.1007/s10856-009-3838-6 es_ES
dc.description.references Lowery, J. L., Datta, N., & Rutledge, G. C. (2010). Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ɛ-caprolactone) fibrous mats. Biomaterials, 31(3), 491-504. doi:10.1016/j.biomaterials.2009.09.072 es_ES
dc.description.references Rahman, M. S., Al-Amri, O. S., & Al-Bulushi, I. M. (2002). Pores and physico-chemical characteristics of dried tuna produced by different methods of drying. Journal of Food Engineering, 53(4), 301-313. doi:10.1016/s0260-8774(01)00169-8 es_ES
dc.description.references Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6 es_ES
dc.description.references Campbell, R. A., Overmyer, K. A., Bagnell, C. R., & Wolberg, A. S. (2008). Cellular Procoagulant Activity Dictates Clot Structure and Stability as a Function of Distance From the Cell Surface. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(12), 2247-2254. doi:10.1161/atvbaha.108.176008 es_ES
dc.description.references Homminga, G. N., Buma, P., Koot, H. W. J., van der Kraan, P. M., & van den Berg, W. B. (1993). Chondrocyte behavior in fibrin glue in vitro. Acta Orthopaedica Scandinavica, 64(4), 441-445. doi:10.3109/17453679308993663 es_ES
dc.description.references Makogonenko, E., Tsurupa, G., Ingham, K., & Medved, L. (2002). Interaction of Fibrin(ogen) with Fibronectin:  Further Characterization and Localization of the Fibronectin-Binding Site†. Biochemistry, 41(25), 7907-7913. doi:10.1021/bi025770x es_ES
dc.description.references González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021 es_ES
dc.description.references Filová, E., Brynda, E., Riedel, T., Bačáková, L., Chlupáč, J., Lisá, V., … Dyr, J. E. (2009). Vascular endothelial cells on two-and three-dimensional fibrin assemblies for biomaterial coatings. Journal of Biomedical Materials Research Part A, 90A(1), 55-69. doi:10.1002/jbm.a.32065 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem