Mostrar el registro sencillo del ítem
dc.contributor.author | Rambla Nebot, Jose Luis | es_ES |
dc.contributor.author | Tikunov, Y.M | es_ES |
dc.contributor.author | Monforte Gilabert, Antonio José | es_ES |
dc.contributor.author | Bovy, A.G. | es_ES |
dc.contributor.author | Granell Richart, Antonio | es_ES |
dc.date.accessioned | 2016-05-19T12:13:06Z | |
dc.date.available | 2016-05-19T12:13:06Z | |
dc.date.issued | 2014-08 | |
dc.identifier.issn | 0022-0957 | |
dc.identifier.uri | http://hdl.handle.net/10251/64406 | |
dc.description.abstract | [EN] The present review aims to synthesize our present knowledge about the mechanisms implied in the biosynthesis of volatile compounds in the ripe tomato fruit, which have a key role in tomato flavour. The difficulties in identifiying not only genes or genomic regions but also individual target compounds for plant breeding are addressed. Ample variability in the levels of almost any volatile compound exists, not only in the populations derived from interspecific crosses but also in heirloom varieties and even in commercial hybrids. Quantitative trait loci (QTLs) for all tomato aroma volatiles have been identified in collections derived from both intraspecific and interspecific crosses with different wild tomato species and they (i) fail to co-localize with structural genes in the volatile biosynthetic pathways and (ii) reveal very little coincidence in the genomic regions characterized, indicating that there is ample opportunity to reinforce the levels of the volatiles of interest. Some of the identified genes may be useful as markers or as biotechnological tools to enhance tomato aroma. Current knowledge about the major volatile biosynthetic pathways in the fruit is summarized. Finally, and based on recent reports, it is stressed that conjugation to other metabolites such as sugars seems to play a key role in the modulation of volatile release, at least in some metabolic pathways. | es_ES |
dc.description.sponsorship | We wish to thank the Metabolomics facility at the IBMCP for technical assistance. AG was supported by grants from MinECO and FECYT. This work was facilitated by the European-funded COST action FA1106 QualityFruit. | |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Journal of Experimental Botany | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aroma | es_ES |
dc.subject | conjugation | es_ES |
dc.subject | flavour | es_ES |
dc.subject | Fruit | es_ES |
dc.subject | QTLs | es_ES |
dc.subject | Solanum | es_ES |
dc.subject | Tomato | es_ES |
dc.subject | Volatile organic compounds | es_ES |
dc.title | The expanded tomato fruit volatile landscape | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/jxb/eru128 | |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//FA1106/EU/An integrated systems approach to determine the developmental mechanisms controlling fleshy fruit quality in tomato and grapevine/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Rambla Nebot, JL.; Tikunov, Y.; Monforte Gilabert, AJ.; Bovy, A.; Granell Richart, A. (2014). The expanded tomato fruit volatile landscape. Journal of Experimental Botany. 65(16):4613-4623. doi:10.1093/jxb/eru128 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1093/jxb/eru128 | es_ES |
dc.description.upvformatpinicio | 4613 | es_ES |
dc.description.upvformatpfin | 4623 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 65 | es_ES |
dc.description.issue | 16 | es_ES |
dc.relation.senia | 282428 | es_ES |
dc.identifier.eissn | 1460-2431 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.description.references | Abegaz, E. G., Tandon, K. S., Scott, J. W., Baldwin, E. A., & Shewfelt, R. L. (2004). Partitioning taste from aromatic flavor notes of fresh tomato (Lycopersicon esculentum, Mill) to develop predictive models as a function of volatile and nonvolatile components. Postharvest Biology and Technology, 34(3), 227-235. doi:10.1016/j.postharvbio.2004.05.023 | es_ES |
dc.description.references | Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4 | es_ES |
dc.description.references | Baldwin, E. A., Goodner, K., & Plotto, A. (2008). Interaction of Volatiles, Sugars, and Acids on Perception of Tomato Aroma and Flavor Descriptors. Journal of Food Science, 73(6), S294-S307. doi:10.1111/j.1750-3841.2008.00825.x | es_ES |
dc.description.references | Baldwin, E. A., Goodner, K., Plotto, A., Pritchett, K., & Einstein, M. (2004). Effect of Volatiles and their Concentration on Perception of Tomato Descriptors. Journal of Food Science, 69(8), S310-S318. doi:10.1111/j.1750-3841.2004.tb18023.x | es_ES |
dc.description.references | Baldwin, E. A., Scott, J. W., Shewmaker, C. K., & Schuch, W. (2000). Flavor Trivia and Tomato Aroma: Biochemistry and Possible Mechanisms for Control of Important Aroma Components. HortScience, 35(6), 1013-1022. doi:10.21273/hortsci.35.6.1013 | es_ES |
dc.description.references | Bender, G., Hummel, T., Negoias, S., & Small, D. M. (2009). Separate signals for orthonasal vs. retronasal perception of food but not nonfood odors. Behavioral Neuroscience, 123(3), 481-489. doi:10.1037/a0015065 | es_ES |
dc.description.references | Bezman, Y., Mayer, F., Takeoka, G. R., Buttery, R. G., Ben-Oliel, G., Rabinowitch, H. D., & Naim, M. (2003). Differential Effects of Tomato (Lycopersicon esculentumMill) Matrix on the Volatility of Important Aroma Compounds†. Journal of Agricultural and Food Chemistry, 51(3), 722-726. doi:10.1021/jf020892h | es_ES |
dc.description.references | Buttery, R. G., Seifert, R. M., Guadagni, D. G., & Ling, L. C. (1971). Characterization of additional volatile components of tomato. Journal of Agricultural and Food Chemistry, 19(3), 524-529. doi:10.1021/jf60175a011 | es_ES |
dc.description.references | Buttery, R. G., Takeoka, G., Teranishi, R., & Ling, L. C. (1990). Tomato aroma components: identification of glycoside hydrolysis volatiles. Journal of Agricultural and Food Chemistry, 38(11), 2050-2053. doi:10.1021/jf00101a010 | es_ES |
dc.description.references | Buttery, R. G., Teranishi, R., Flath, R. A., & Ling, L. C. (1989). Fresh Tomato Volatiles. ACS Symposium Series, 213-222. doi:10.1021/bk-1989-0388.ch017 | es_ES |
dc.description.references | Buttery, R. G., Teranishi, R., Ling, L. C., Flath, R. A., & Stern, D. J. (1988). Quantitative studies on origins of fresh tomato aroma volatiles. Journal of Agricultural and Food Chemistry, 36(6), 1247-1250. doi:10.1021/jf00084a030 | es_ES |
dc.description.references | Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M.-I., Nunes-Nesi, A., … Fernie, A. R. (2006). Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiology, 142(4), 1380-1396. doi:10.1104/pp.106.088534 | es_ES |
dc.description.references | Causse, M., Friguet, C., Coiret, C., Lépicier, M., Navez, B., Lee, M., … Grandillo, S. (2010). Consumer Preferences for Fresh Tomato at the European Scale: A Common Segmentation on Taste and Firmness. Journal of Food Science, 75(9), S531-S541. doi:10.1111/j.1750-3841.2010.01841.x | es_ES |
dc.description.references | Causse, M. (2002). QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. Journal of Experimental Botany, 53(377), 2089-2098. doi:10.1093/jxb/erf058 | es_ES |
dc.description.references | Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a Specific Isoform of Tomato Lipoxygenase (TomloxC) Involved in the Generation of Fatty Acid-Derived Flavor Compounds. Plant Physiology, 136(1), 2641-2651. doi:10.1104/pp.104.041608 | es_ES |
dc.description.references | Du, X., Finn, C. E., & Qian, M. C. (2010). Bound Volatile Precursors in Genotypes in the Pedigree of ‘Marion’ Blackberry (RubusSp.). Journal of Agricultural and Food Chemistry, 58(6), 3694-3699. doi:10.1021/jf9034089 | es_ES |
dc.description.references | Floss, D. S., & Walter, M. H. (2009). Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signaling & Behavior, 4(3), 172-175. doi:10.4161/psb.4.3.7840 | es_ES |
dc.description.references | Gardner, H. W., Grove, M. J., & Salch, Y. P. (1996). Enzymic Pathway to Ethyl Vinyl Ketone and 2-Pentenal in Soybean Preparations. Journal of Agricultural and Food Chemistry, 44(3), 882-886. doi:10.1021/jf950509r | es_ES |
dc.description.references | Goff, S. A. (2006). Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value? Science, 311(5762), 815-819. doi:10.1126/science.1112614 | es_ES |
dc.description.references | González-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016 | es_ES |
dc.description.references | Goulet, C., Mageroy, M. H., Lam, N. B., Floystad, A., Tieman, D. M., & Klee, H. J. (2012). Role of an esterase in flavor volatile variation within the tomato clade. Proceedings of the National Academy of Sciences, 109(46), 19009-19014. doi:10.1073/pnas.1216515109 | es_ES |
dc.description.references | Granell, A., & Rambla, J. L. (2013). Biosynthesis of Volatile Compounds. The Molecular Biology and Biochemistry of Fruit Ripening, 135-161. doi:10.1002/9781118593714.ch6 | es_ES |
dc.description.references | Guadagni, D. G., Buttery, R. G., & Okano, S. (1963). Odour thresholds of some organic compounds associated with food flavours. Journal of the Science of Food and Agriculture, 14(10), 761-765. doi:10.1002/jsfa.2740141014 | es_ES |
dc.description.references | Hemmerlin, A., Hoeffler, J.-F., Meyer, O., Tritsch, D., Kagan, I. A., Grosdemange-Billiard, C., … Bach, T. J. (2003). Cross-talk between the Cytosolic Mevalonate and the Plastidial Methylerythritol Phosphate Pathways in Tobacco Bright Yellow-2 Cells. Journal of Biological Chemistry, 278(29), 26666-26676. doi:10.1074/jbc.m302526200 | es_ES |
dc.description.references | Howe, G. A., Lee, G. I., Itoh, A., Li, L., & DeRocher, A. E. (2000). Cytochrome P450-Dependent Metabolism of Oxylipins in Tomato. Cloning and Expression of Allene Oxide Synthase and Fatty Acid Hydroperoxide Lyase. Plant Physiology, 123(2), 711-724. doi:10.1104/pp.123.2.711 | es_ES |
dc.description.references | Ilg, A., Beyer, P., & Al-Babili, S. (2008). Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS Journal, 276(3), 736-747. doi:10.1111/j.1742-4658.2008.06820.x | es_ES |
dc.description.references | Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44-56. doi:10.1111/j.1469-8137.2010.03281.x | es_ES |
dc.description.references | Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507 | es_ES |
dc.description.references | Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257-262. doi:10.1016/j.tig.2012.12.003 | es_ES |
dc.description.references | Koeduka, T., Fridman, E., Gang, D. R., Vassao, D. G., Jackson, B. L., Kish, C. M., … Pichersky, E. (2006). Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences, 103(26), 10128-10133. doi:10.1073/pnas.0603732103 | es_ES |
dc.description.references | Kovács, K., Fray, R. G., Tikunov, Y., Graham, N., Bradley, G., Seymour, G. B., … Grierson, D. (2009). Effect of tomato pleiotropic ripening mutations on flavour volatile biosynthesis. Phytochemistry, 70(8), 1003-1008. doi:10.1016/j.phytochem.2009.05.014 | es_ES |
dc.description.references | Kochevenko, A., Araújo, W. L., Maloney, G. S., Tieman, D. M., Do, P. T., Taylor, M. G., … Fernie, A. R. (2012). Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits. Molecular Plant, 5(2), 366-375. doi:10.1093/mp/ssr108 | es_ES |
dc.description.references | KURODA, H., OSHIMA, T., KANEDA, H., & TAKASHIO, M. (2005). Identification and Functional Analyses of Two cDNAs That Encode Fatty Acid 9-/13-Hydroperoxide Lyase (CYP74C) in Rice. Bioscience, Biotechnology, and Biochemistry, 69(8), 1545-1554. doi:10.1271/bbb.69.1545 | es_ES |
dc.description.references | Lê, S., & Ledauphin, S. (2006). You like tomato, I like tomato: Segmentation of consumers with missing values. Food Quality and Preference, 17(3-4), 228-233. doi:10.1016/j.foodqual.2005.08.001 | es_ES |
dc.description.references | Lengard, V., & Kermit, M. (2006). 3-Way and 3-block PLS regressions in consumer preference analysis. Food Quality and Preference, 17(3-4), 234-242. doi:10.1016/j.foodqual.2005.05.005 | es_ES |
dc.description.references | Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., & Tadmor, Y. (2005). Carotenoid Pigmentation Affects the Volatile Composition of Tomato and Watermelon Fruits, As Revealed by Comparative Genetic Analyses. Journal of Agricultural and Food Chemistry, 53(8), 3142-3148. doi:10.1021/jf047927t | es_ES |
dc.description.references | Liavonchanka, A., & Feussner, I. (2006). Lipoxygenases: Occurrence, functions and catalysis. Journal of Plant Physiology, 163(3), 348-357. doi:10.1016/j.jplph.2005.11.006 | es_ES |
dc.description.references | Mageroy, M. H., Tieman, D. M., Floystad, A., Taylor, M. G., & Klee, H. J. (2011). A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. The Plant Journal, 69(6), 1043-1051. doi:10.1111/j.1365-313x.2011.04854.x | es_ES |
dc.description.references | Maloney, G. S., Kochevenko, A., Tieman, D. M., Tohge, T., Krieger, U., Zamir, D., … Klee, H. J. (2010). Characterization of the Branched-Chain Amino Acid Aminotransferase Enzyme Family in Tomato. Plant Physiology, 153(3), 925-936. doi:10.1104/pp.110.154922 | es_ES |
dc.description.references | Marilley, L. (2004). Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. International Journal of Food Microbiology, 90(2), 139-159. doi:10.1016/s0168-1605(03)00304-0 | es_ES |
dc.description.references | Marlatt, C., Ho, C. T., & Chien, M. (1992). Studies of aroma constituents bound as glycosides in tomato. Journal of Agricultural and Food Chemistry, 40(2), 249-252. doi:10.1021/jf00014a016 | es_ES |
dc.description.references | Mathieu, S., Cin, V. D., Fei, Z., Li, H., Bliss, P., Taylor, M. G., … Tieman, D. M. (2008). Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany, 60(1), 325-337. doi:10.1093/jxb/ern294 | es_ES |
dc.description.references | Matsui, K. (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 9(3), 274-280. doi:10.1016/j.pbi.2006.03.002 | es_ES |
dc.description.references | Matsui, K., Kurishita, S., Hisamitsu, A., & Kajiwara, T. (2000). A lipid-hydrolysing activity involved in hexenal formation. Biochemical Society Transactions, 28(6), 857-860. doi:10.1042/bst0280857 | es_ES |
dc.description.references | Matsui, K., Ujita, C., Fujimoto, S., Wilkinson, J., Hiatt, B., Knauf, V., … Feussner, I. (2000). Fatty acid 9- and 13-hydroperoxide lyases from cucumber1. FEBS Letters, 481(2), 183-188. doi:10.1016/s0014-5793(00)01997-9 | es_ES |
dc.description.references | Mita, G., Quarta, A., Fasano, P., De Paolis, A., Di Sansebastiano, G. P., Perrotta, C., … Santino, A. (2005). Molecular cloning and characterization of an almond 9-hydroperoxide lyase, a new CYP74 targeted to lipid bodies*. Journal of Experimental Botany, 56(419), 2321-2333. doi:10.1093/jxb/eri225 | es_ES |
dc.description.references | Moummou, H., Tonfack, L. B., Chervin, C., Benichou, M., Youmbi, E., Ginies, C., … van der Rest, B. (2012). Functional characterization of SlscADH1, a fruit-ripening-associated short-chain alcohol dehydrogenase of tomato. Journal of Plant Physiology, 169(15), 1435-1444. doi:10.1016/j.jplph.2012.06.007 | es_ES |
dc.description.references | Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 584(14), 2965-2973. doi:10.1016/j.febslet.2010.05.045 | es_ES |
dc.description.references | Negoias, S., Visschers, R., Boelrijk, A., & Hummel, T. (2008). New ways to understand aroma perception. Food Chemistry, 108(4), 1247-1254. doi:10.1016/j.foodchem.2007.08.030 | es_ES |
dc.description.references | Noordermeer, M. A., Veldink, G. A., & Vliegenthart, J. F. . (1999). Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z :2E -enal isomerase. FEBS Letters, 443(2), 201-204. doi:10.1016/s0014-5793(98)01706-2 | es_ES |
dc.description.references | Ortiz-Serrano, P., & Gil, J. V. (2007). Quantitation of Free and Glycosidically Bound Volatiles in and Effect of Glycosidase Addition on Three Tomato Varieties (Solanum lycopersicumL.). Journal of Agricultural and Food Chemistry, 55(22), 9170-9176. doi:10.1021/jf0715673 | es_ES |
dc.description.references | Ortiz-Serrano, P., & Gil, J. V. (2010). Quantitative Comparison of Free and Bound Volatiles of Two Commercial Tomato Cultivars (Solanum lycopersicumL.) during Ripening. Journal of Agricultural and Food Chemistry, 58(2), 1106-1114. doi:10.1021/jf903366r | es_ES |
dc.description.references | Orzaez, D., Medina, A., Torre, S., Fernández-Moreno, J. P., Rambla, J. L., Fernández-del-Carmen, A., … Granell, A. (2009). A Visual Reporter System for Virus-Induced Gene Silencing in Tomato Fruit Based on Anthocyanin Accumulation. Plant Physiology, 150(3), 1122-1134. doi:10.1104/pp.109.139006 | es_ES |
dc.description.references | Piombino, P., Sinesio, F., Moneta, E., Cammareri, M., Genovese, A., Lisanti, M. T., … Grandillo, S. (2013). Investigating physicochemical, volatile and sensory parameters playing a positive or a negative role on tomato liking. Food Research International, 50(1), 409-419. doi:10.1016/j.foodres.2012.10.033 | es_ES |
dc.description.references | Rick, C. M., Uhlig, J. W., & Jones, A. D. (1994). High alpha-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: developmental and genetic aspects. Proceedings of the National Academy of Sciences, 91(26), 12877-12881. doi:10.1073/pnas.91.26.12877 | es_ES |
dc.description.references | Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992 | es_ES |
dc.description.references | Simkin, A. J., Schwartz, S. H., Auldridge, M., Taylor, M. G., & Klee, H. J. (2004). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal, 40(6), 882-892. doi:10.1111/j.1365-313x.2004.02263.x | es_ES |
dc.description.references | Sinesio, F., Cammareri, M., Moneta, E., Navez, B., Peparaio, M., Causse, M., & Grandillo, S. (2010). Sensory Quality of Fresh French and Dutch Market Tomatoes: A Preference Mapping Study with Italian Consumers. Journal of Food Science, 75(1), S55-S67. doi:10.1111/j.1750-3841.2009.01424.x | es_ES |
dc.description.references | Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Steele Scott, N., Loveys, B., & Schuch, W. (1998). Genetic Manipulation of Alcohol Dehydrogenase Levels in Ripening Tomato Fruit Affects the Balance of Some Flavor Aldehydes and Alcohols. Plant Physiology, 117(3), 1047-1058. doi:10.1104/pp.117.3.1047 | es_ES |
dc.description.references | Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., … Lewinsohn, E. (2002). Identification ofmalodorous, a Wild Species Allele Affecting Tomato Aroma That Was Selected against during Domestication. Journal of Agricultural and Food Chemistry, 50(7), 2005-2009. doi:10.1021/jf011237x | es_ES |
dc.description.references | Tandon, K. S., Baldwin, E. A., Scott, J. W., & Shewfelt, R. L. (2003). Linking Sensory Descriptors to Volatile and Nonvolatile Components of Fresh Tomato Flavor. Journal of Food Science, 68(7), 2366-2371. doi:10.1111/j.1365-2621.2003.tb05774.x | es_ES |
dc.description.references | Tieman, D., Bliss, P., McIntyre, L. M., Blandon-Ubeda, A., Bies, D., Odabasi, A. Z., … Klee, H. J. (2012). The Chemical Interactions Underlying Tomato Flavor Preferences. Current Biology, 22(11), 1035-1039. doi:10.1016/j.cub.2012.04.016 | es_ES |
dc.description.references | Tieman, D. M., Loucas, H. M., Kim, J. Y., Clark, D. G., & Klee, H. J. (2007). Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry, 68(21), 2660-2669. doi:10.1016/j.phytochem.2007.06.005 | es_ES |
dc.description.references | Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., & Klee, H. J. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences, 103(21), 8287-8292. doi:10.1073/pnas.0602469103 | es_ES |
dc.description.references | Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887-896. doi:10.1093/jxb/erj074 | es_ES |
dc.description.references | Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113-123. doi:10.1111/j.1365-313x.2010.04128.x | es_ES |
dc.description.references | Tikunov, Y. M., de Vos, R. C. H., González Paramás, A. M., Hall, R. D., & Bovy, A. G. (2009). A Role for Differential Glycoconjugation in the Emission of Phenylpropanoid Volatiles from Tomato Fruit Discovered Using a Metabolic Data Fusion Approach. Plant Physiology, 152(1), 55-70. doi:10.1104/pp.109.146670 | es_ES |
dc.description.references | Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130 | es_ES |
dc.description.references | Tikunov, Y. M., Molthoff, J., de Vos, R. C. H., Beekwilder, J., van Houwelingen, A., van der Hooft, J. J. J., … Bovy, A. G. (2013). NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit. The Plant Cell, 25(8), 3067-3078. doi:10.1105/tpc.113.114231 | es_ES |
dc.description.references | Tzin, V., Rogachev, I., Meir, S., Moyal Ben Zvi, M., Masci, T., Vainstein, A., … Galili, G. (2013). Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma. Journal of Experimental Botany, 64(14), 4441-4452. doi:10.1093/jxb/ert250 | es_ES |
dc.description.references | Ursem, R., Tikunov, Y., Bovy, A., van Berloo, R., & van Eeuwijk, F. (2008). A correlation network approach to metabolic data analysis for tomato fruits. Euphytica, 161(1-2), 181-193. doi:10.1007/s10681-008-9672-y | es_ES |
dc.description.references | Vancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, F., Castanera, P., & Sanchez-Serrano, J. J. (2001). Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences, 98(14), 8139-8144. doi:10.1073/pnas.141079498 | es_ES |
dc.description.references | Vogel, J. T., Tan, B.-C., McCarty, D. R., & Klee, H. J. (2008). The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions. Journal of Biological Chemistry, 283(17), 11364-11373. doi:10.1074/jbc.m710106200 | es_ES |
dc.description.references | Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., & Klee, H. J. (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 90(13), 2233-2240. doi:10.1002/jsfa.4076 | es_ES |
dc.description.references | Walter, M. H., Floss, D. S., & Strack, D. (2010). Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta, 232(1), 1-17. doi:10.1007/s00425-010-1156-3 | es_ES |
dc.description.references | Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 | es_ES |
dc.description.references | Zhang, B., Chen, K., Bowen, J., Allan, A., Espley, R., Karunairetnam, S., & Ferguson, I. (2006). Differential expression within the LOX gene family in ripening kiwifruit. Journal of Experimental Botany, 57(14), 3825-3836. doi:10.1093/jxb/erl151 | es_ES |
dc.description.references | Zorrilla-Fontanesi, Y., Rambla, J.-L., Cabeza, A., Medina, J. J., Sánchez-Sevilla, J. F., Valpuesta, V., … Amaya, I. (2012). Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content. Plant Physiology, 159(2), 851-870. doi:10.1104/pp.111.188318 | es_ES |