Abegaz, E. G., Tandon, K. S., Scott, J. W., Baldwin, E. A., & Shewfelt, R. L. (2004). Partitioning taste from aromatic flavor notes of fresh tomato (Lycopersicon esculentum, Mill) to develop predictive models as a function of volatile and nonvolatile components. Postharvest Biology and Technology, 34(3), 227-235. doi:10.1016/j.postharvbio.2004.05.023
Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4
Baldwin, E. A., Goodner, K., & Plotto, A. (2008). Interaction of Volatiles, Sugars, and Acids on Perception of Tomato Aroma and Flavor Descriptors. Journal of Food Science, 73(6), S294-S307. doi:10.1111/j.1750-3841.2008.00825.x
[+]
Abegaz, E. G., Tandon, K. S., Scott, J. W., Baldwin, E. A., & Shewfelt, R. L. (2004). Partitioning taste from aromatic flavor notes of fresh tomato (Lycopersicon esculentum, Mill) to develop predictive models as a function of volatile and nonvolatile components. Postharvest Biology and Technology, 34(3), 227-235. doi:10.1016/j.postharvbio.2004.05.023
Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4
Baldwin, E. A., Goodner, K., & Plotto, A. (2008). Interaction of Volatiles, Sugars, and Acids on Perception of Tomato Aroma and Flavor Descriptors. Journal of Food Science, 73(6), S294-S307. doi:10.1111/j.1750-3841.2008.00825.x
Baldwin, E. A., Goodner, K., Plotto, A., Pritchett, K., & Einstein, M. (2004). Effect of Volatiles and their Concentration on Perception of Tomato Descriptors. Journal of Food Science, 69(8), S310-S318. doi:10.1111/j.1750-3841.2004.tb18023.x
Baldwin, E. A., Scott, J. W., Shewmaker, C. K., & Schuch, W. (2000). Flavor Trivia and Tomato Aroma: Biochemistry and Possible Mechanisms for Control of Important Aroma Components. HortScience, 35(6), 1013-1022. doi:10.21273/hortsci.35.6.1013
Bender, G., Hummel, T., Negoias, S., & Small, D. M. (2009). Separate signals for orthonasal vs. retronasal perception of food but not nonfood odors. Behavioral Neuroscience, 123(3), 481-489. doi:10.1037/a0015065
Bezman, Y., Mayer, F., Takeoka, G. R., Buttery, R. G., Ben-Oliel, G., Rabinowitch, H. D., & Naim, M. (2003). Differential Effects of Tomato (Lycopersicon esculentumMill) Matrix on the Volatility of Important Aroma Compounds†. Journal of Agricultural and Food Chemistry, 51(3), 722-726. doi:10.1021/jf020892h
Buttery, R. G., Seifert, R. M., Guadagni, D. G., & Ling, L. C. (1971). Characterization of additional volatile components of tomato. Journal of Agricultural and Food Chemistry, 19(3), 524-529. doi:10.1021/jf60175a011
Buttery, R. G., Takeoka, G., Teranishi, R., & Ling, L. C. (1990). Tomato aroma components: identification of glycoside hydrolysis volatiles. Journal of Agricultural and Food Chemistry, 38(11), 2050-2053. doi:10.1021/jf00101a010
Buttery, R. G., Teranishi, R., Flath, R. A., & Ling, L. C. (1989). Fresh Tomato Volatiles. ACS Symposium Series, 213-222. doi:10.1021/bk-1989-0388.ch017
Buttery, R. G., Teranishi, R., Ling, L. C., Flath, R. A., & Stern, D. J. (1988). Quantitative studies on origins of fresh tomato aroma volatiles. Journal of Agricultural and Food Chemistry, 36(6), 1247-1250. doi:10.1021/jf00084a030
Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M.-I., Nunes-Nesi, A., … Fernie, A. R. (2006). Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiology, 142(4), 1380-1396. doi:10.1104/pp.106.088534
Causse, M., Friguet, C., Coiret, C., Lépicier, M., Navez, B., Lee, M., … Grandillo, S. (2010). Consumer Preferences for Fresh Tomato at the European Scale: A Common Segmentation on Taste and Firmness. Journal of Food Science, 75(9), S531-S541. doi:10.1111/j.1750-3841.2010.01841.x
Causse, M. (2002). QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. Journal of Experimental Botany, 53(377), 2089-2098. doi:10.1093/jxb/erf058
Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a Specific Isoform of Tomato Lipoxygenase (TomloxC) Involved in the Generation of Fatty Acid-Derived Flavor Compounds. Plant Physiology, 136(1), 2641-2651. doi:10.1104/pp.104.041608
Du, X., Finn, C. E., & Qian, M. C. (2010). Bound Volatile Precursors in Genotypes in the Pedigree of ‘Marion’ Blackberry (RubusSp.). Journal of Agricultural and Food Chemistry, 58(6), 3694-3699. doi:10.1021/jf9034089
Floss, D. S., & Walter, M. H. (2009). Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signaling & Behavior, 4(3), 172-175. doi:10.4161/psb.4.3.7840
Gardner, H. W., Grove, M. J., & Salch, Y. P. (1996). Enzymic Pathway to Ethyl Vinyl Ketone and 2-Pentenal in Soybean Preparations. Journal of Agricultural and Food Chemistry, 44(3), 882-886. doi:10.1021/jf950509r
Goff, S. A. (2006). Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value? Science, 311(5762), 815-819. doi:10.1126/science.1112614
González-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016
Goulet, C., Mageroy, M. H., Lam, N. B., Floystad, A., Tieman, D. M., & Klee, H. J. (2012). Role of an esterase in flavor volatile variation within the tomato clade. Proceedings of the National Academy of Sciences, 109(46), 19009-19014. doi:10.1073/pnas.1216515109
Granell, A., & Rambla, J. L. (2013). Biosynthesis of Volatile Compounds. The Molecular Biology and Biochemistry of Fruit Ripening, 135-161. doi:10.1002/9781118593714.ch6
Guadagni, D. G., Buttery, R. G., & Okano, S. (1963). Odour thresholds of some organic compounds associated with food flavours. Journal of the Science of Food and Agriculture, 14(10), 761-765. doi:10.1002/jsfa.2740141014
Hemmerlin, A., Hoeffler, J.-F., Meyer, O., Tritsch, D., Kagan, I. A., Grosdemange-Billiard, C., … Bach, T. J. (2003). Cross-talk between the Cytosolic Mevalonate and the Plastidial Methylerythritol Phosphate Pathways in Tobacco Bright Yellow-2 Cells. Journal of Biological Chemistry, 278(29), 26666-26676. doi:10.1074/jbc.m302526200
Howe, G. A., Lee, G. I., Itoh, A., Li, L., & DeRocher, A. E. (2000). Cytochrome P450-Dependent Metabolism of Oxylipins in Tomato. Cloning and Expression of Allene Oxide Synthase and Fatty Acid Hydroperoxide Lyase. Plant Physiology, 123(2), 711-724. doi:10.1104/pp.123.2.711
Ilg, A., Beyer, P., & Al-Babili, S. (2008). Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS Journal, 276(3), 736-747. doi:10.1111/j.1742-4658.2008.06820.x
Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44-56. doi:10.1111/j.1469-8137.2010.03281.x
Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507
Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257-262. doi:10.1016/j.tig.2012.12.003
Koeduka, T., Fridman, E., Gang, D. R., Vassao, D. G., Jackson, B. L., Kish, C. M., … Pichersky, E. (2006). Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences, 103(26), 10128-10133. doi:10.1073/pnas.0603732103
Kovács, K., Fray, R. G., Tikunov, Y., Graham, N., Bradley, G., Seymour, G. B., … Grierson, D. (2009). Effect of tomato pleiotropic ripening mutations on flavour volatile biosynthesis. Phytochemistry, 70(8), 1003-1008. doi:10.1016/j.phytochem.2009.05.014
Kochevenko, A., Araújo, W. L., Maloney, G. S., Tieman, D. M., Do, P. T., Taylor, M. G., … Fernie, A. R. (2012). Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits. Molecular Plant, 5(2), 366-375. doi:10.1093/mp/ssr108
KURODA, H., OSHIMA, T., KANEDA, H., & TAKASHIO, M. (2005). Identification and Functional Analyses of Two cDNAs That Encode Fatty Acid 9-/13-Hydroperoxide Lyase (CYP74C) in Rice. Bioscience, Biotechnology, and Biochemistry, 69(8), 1545-1554. doi:10.1271/bbb.69.1545
Lê, S., & Ledauphin, S. (2006). You like tomato, I like tomato: Segmentation of consumers with missing values. Food Quality and Preference, 17(3-4), 228-233. doi:10.1016/j.foodqual.2005.08.001
Lengard, V., & Kermit, M. (2006). 3-Way and 3-block PLS regressions in consumer preference analysis. Food Quality and Preference, 17(3-4), 234-242. doi:10.1016/j.foodqual.2005.05.005
Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., & Tadmor, Y. (2005). Carotenoid Pigmentation Affects the Volatile Composition of Tomato and Watermelon Fruits, As Revealed by Comparative Genetic Analyses. Journal of Agricultural and Food Chemistry, 53(8), 3142-3148. doi:10.1021/jf047927t
Liavonchanka, A., & Feussner, I. (2006). Lipoxygenases: Occurrence, functions and catalysis. Journal of Plant Physiology, 163(3), 348-357. doi:10.1016/j.jplph.2005.11.006
Mageroy, M. H., Tieman, D. M., Floystad, A., Taylor, M. G., & Klee, H. J. (2011). A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. The Plant Journal, 69(6), 1043-1051. doi:10.1111/j.1365-313x.2011.04854.x
Maloney, G. S., Kochevenko, A., Tieman, D. M., Tohge, T., Krieger, U., Zamir, D., … Klee, H. J. (2010). Characterization of the Branched-Chain Amino Acid Aminotransferase Enzyme Family in Tomato. Plant Physiology, 153(3), 925-936. doi:10.1104/pp.110.154922
Marilley, L. (2004). Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. International Journal of Food Microbiology, 90(2), 139-159. doi:10.1016/s0168-1605(03)00304-0
Marlatt, C., Ho, C. T., & Chien, M. (1992). Studies of aroma constituents bound as glycosides in tomato. Journal of Agricultural and Food Chemistry, 40(2), 249-252. doi:10.1021/jf00014a016
Mathieu, S., Cin, V. D., Fei, Z., Li, H., Bliss, P., Taylor, M. G., … Tieman, D. M. (2008). Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany, 60(1), 325-337. doi:10.1093/jxb/ern294
Matsui, K. (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 9(3), 274-280. doi:10.1016/j.pbi.2006.03.002
Matsui, K., Kurishita, S., Hisamitsu, A., & Kajiwara, T. (2000). A lipid-hydrolysing activity involved in hexenal formation. Biochemical Society Transactions, 28(6), 857-860. doi:10.1042/bst0280857
Matsui, K., Ujita, C., Fujimoto, S., Wilkinson, J., Hiatt, B., Knauf, V., … Feussner, I. (2000). Fatty acid 9- and 13-hydroperoxide lyases from cucumber1. FEBS Letters, 481(2), 183-188. doi:10.1016/s0014-5793(00)01997-9
Mita, G., Quarta, A., Fasano, P., De Paolis, A., Di Sansebastiano, G. P., Perrotta, C., … Santino, A. (2005). Molecular cloning and characterization of an almond 9-hydroperoxide lyase, a new CYP74 targeted to lipid bodies*. Journal of Experimental Botany, 56(419), 2321-2333. doi:10.1093/jxb/eri225
Moummou, H., Tonfack, L. B., Chervin, C., Benichou, M., Youmbi, E., Ginies, C., … van der Rest, B. (2012). Functional characterization of SlscADH1, a fruit-ripening-associated short-chain alcohol dehydrogenase of tomato. Journal of Plant Physiology, 169(15), 1435-1444. doi:10.1016/j.jplph.2012.06.007
Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 584(14), 2965-2973. doi:10.1016/j.febslet.2010.05.045
Negoias, S., Visschers, R., Boelrijk, A., & Hummel, T. (2008). New ways to understand aroma perception. Food Chemistry, 108(4), 1247-1254. doi:10.1016/j.foodchem.2007.08.030
Noordermeer, M. A., Veldink, G. A., & Vliegenthart, J. F. . (1999). Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z
:2E
-enal isomerase. FEBS Letters, 443(2), 201-204. doi:10.1016/s0014-5793(98)01706-2
Ortiz-Serrano, P., & Gil, J. V. (2007). Quantitation of Free and Glycosidically Bound Volatiles in and Effect of Glycosidase Addition on Three Tomato Varieties (Solanum lycopersicumL.). Journal of Agricultural and Food Chemistry, 55(22), 9170-9176. doi:10.1021/jf0715673
Ortiz-Serrano, P., & Gil, J. V. (2010). Quantitative Comparison of Free and Bound Volatiles of Two Commercial Tomato Cultivars (Solanum lycopersicumL.) during Ripening. Journal of Agricultural and Food Chemistry, 58(2), 1106-1114. doi:10.1021/jf903366r
Orzaez, D., Medina, A., Torre, S., Fernández-Moreno, J. P., Rambla, J. L., Fernández-del-Carmen, A., … Granell, A. (2009). A Visual Reporter System for Virus-Induced Gene Silencing in Tomato Fruit Based on Anthocyanin Accumulation. Plant Physiology, 150(3), 1122-1134. doi:10.1104/pp.109.139006
Piombino, P., Sinesio, F., Moneta, E., Cammareri, M., Genovese, A., Lisanti, M. T., … Grandillo, S. (2013). Investigating physicochemical, volatile and sensory parameters playing a positive or a negative role on tomato liking. Food Research International, 50(1), 409-419. doi:10.1016/j.foodres.2012.10.033
Rick, C. M., Uhlig, J. W., & Jones, A. D. (1994). High alpha-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: developmental and genetic aspects. Proceedings of the National Academy of Sciences, 91(26), 12877-12881. doi:10.1073/pnas.91.26.12877
Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992
Simkin, A. J., Schwartz, S. H., Auldridge, M., Taylor, M. G., & Klee, H. J. (2004). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal, 40(6), 882-892. doi:10.1111/j.1365-313x.2004.02263.x
Sinesio, F., Cammareri, M., Moneta, E., Navez, B., Peparaio, M., Causse, M., & Grandillo, S. (2010). Sensory Quality of Fresh French and Dutch Market Tomatoes: A Preference Mapping Study with Italian Consumers. Journal of Food Science, 75(1), S55-S67. doi:10.1111/j.1750-3841.2009.01424.x
Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Steele Scott, N., Loveys, B., & Schuch, W. (1998). Genetic Manipulation of Alcohol Dehydrogenase Levels in Ripening Tomato Fruit Affects the Balance of Some Flavor Aldehydes and Alcohols. Plant Physiology, 117(3), 1047-1058. doi:10.1104/pp.117.3.1047
Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., … Lewinsohn, E. (2002). Identification ofmalodorous, a Wild Species Allele Affecting Tomato Aroma That Was Selected against during Domestication. Journal of Agricultural and Food Chemistry, 50(7), 2005-2009. doi:10.1021/jf011237x
Tandon, K. S., Baldwin, E. A., Scott, J. W., & Shewfelt, R. L. (2003). Linking Sensory Descriptors to Volatile and Nonvolatile Components of Fresh Tomato Flavor. Journal of Food Science, 68(7), 2366-2371. doi:10.1111/j.1365-2621.2003.tb05774.x
Tieman, D., Bliss, P., McIntyre, L. M., Blandon-Ubeda, A., Bies, D., Odabasi, A. Z., … Klee, H. J. (2012). The Chemical Interactions Underlying Tomato Flavor Preferences. Current Biology, 22(11), 1035-1039. doi:10.1016/j.cub.2012.04.016
Tieman, D. M., Loucas, H. M., Kim, J. Y., Clark, D. G., & Klee, H. J. (2007). Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry, 68(21), 2660-2669. doi:10.1016/j.phytochem.2007.06.005
Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., & Klee, H. J. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences, 103(21), 8287-8292. doi:10.1073/pnas.0602469103
Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887-896. doi:10.1093/jxb/erj074
Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113-123. doi:10.1111/j.1365-313x.2010.04128.x
Tikunov, Y. M., de Vos, R. C. H., González Paramás, A. M., Hall, R. D., & Bovy, A. G. (2009). A Role for Differential Glycoconjugation in the Emission of Phenylpropanoid Volatiles from Tomato Fruit Discovered Using a Metabolic Data Fusion Approach. Plant Physiology, 152(1), 55-70. doi:10.1104/pp.109.146670
Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130
Tikunov, Y. M., Molthoff, J., de Vos, R. C. H., Beekwilder, J., van Houwelingen, A., van der Hooft, J. J. J., … Bovy, A. G. (2013). NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit. The Plant Cell, 25(8), 3067-3078. doi:10.1105/tpc.113.114231
Tzin, V., Rogachev, I., Meir, S., Moyal Ben Zvi, M., Masci, T., Vainstein, A., … Galili, G. (2013). Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma. Journal of Experimental Botany, 64(14), 4441-4452. doi:10.1093/jxb/ert250
Ursem, R., Tikunov, Y., Bovy, A., van Berloo, R., & van Eeuwijk, F. (2008). A correlation network approach to metabolic data analysis for tomato fruits. Euphytica, 161(1-2), 181-193. doi:10.1007/s10681-008-9672-y
Vancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, F., Castanera, P., & Sanchez-Serrano, J. J. (2001). Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences, 98(14), 8139-8144. doi:10.1073/pnas.141079498
Vogel, J. T., Tan, B.-C., McCarty, D. R., & Klee, H. J. (2008). The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions. Journal of Biological Chemistry, 283(17), 11364-11373. doi:10.1074/jbc.m710106200
Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., & Klee, H. J. (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 90(13), 2233-2240. doi:10.1002/jsfa.4076
Walter, M. H., Floss, D. S., & Strack, D. (2010). Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta, 232(1), 1-17. doi:10.1007/s00425-010-1156-3
Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086
Zhang, B., Chen, K., Bowen, J., Allan, A., Espley, R., Karunairetnam, S., & Ferguson, I. (2006). Differential expression within the LOX gene family in ripening kiwifruit. Journal of Experimental Botany, 57(14), 3825-3836. doi:10.1093/jxb/erl151
Zorrilla-Fontanesi, Y., Rambla, J.-L., Cabeza, A., Medina, J. J., Sánchez-Sevilla, J. F., Valpuesta, V., … Amaya, I. (2012). Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content. Plant Physiology, 159(2), 851-870. doi:10.1104/pp.111.188318
[-]