- -

Experimental verification of total absorption by a low-loss thin dielectric layer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental verification of total absorption by a low-loss thin dielectric layer

Mostrar el registro completo del ítem

Díaz Rubio, A.; Hibbins, A.; Carbonell Olivares, J.; Sánchez-Dehesa Moreno-Cid, J. (2015). Experimental verification of total absorption by a low-loss thin dielectric layer. Applied Physics Letters. 106(24):241604-1-241604-5. https://doi.org/10.1063/1.4922801

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64461

Ficheros en el ítem

Metadatos del ítem

Título: Experimental verification of total absorption by a low-loss thin dielectric layer
Autor: Díaz Rubio, Ana Hibbins, A.P. Carbonell Olivares, Jorge Sánchez-Dehesa Moreno-Cid, José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
This work presents an experimental demonstration of total absorption by a metal-dielectric metasurface. Following a theoretical proposal [Dıaz-Rubio et al., Phys. Rev. B 89, 245123 (2014)], we have designed and ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Applied Physics Letters. (issn: 0003-6951 )
DOI: 10.1063/1.4922801
Editorial:
American Institute of Physics (AIP)
Versión del editor: http://dx.doi.org/10.1063/1.4922801
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/
info:eu-repo/grantAgreement/ONR//N00014-12-1-0216/
info:eu-repo/grantAgreement/MINECO//EEBB-I-14-08331/ES/EEBB-I-14-08331/
Agradecimientos:
This work was partially supported by the Spanish Ministerio de Economia y Competitividad (MINECO) under Contract No. TEC2010-19751 and the USA office of Naval Research, under Grant No. N000141210216. A. Hibbins acknowledges ...[+]
Tipo: Artículo

References

Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192

Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907

Cai, W., Genov, D. A., & Shalaev, V. M. (2005). Superlens based on metal-dielectric composites. Physical Review B, 72(19). doi:10.1103/physrevb.72.193101 [+]
Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192

Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907

Cai, W., Genov, D. A., & Shalaev, V. M. (2005). Superlens based on metal-dielectric composites. Physical Review B, 72(19). doi:10.1103/physrevb.72.193101

Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect Metamaterial Absorber. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207402

Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., & Padilla, W. J. (2008). A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 16(10), 7181. doi:10.1364/oe.16.007181

Cheng, Y., Nie, Y., & Gong, R. (2013). A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Optics & Laser Technology, 48, 415-421. doi:10.1016/j.optlastec.2012.11.016

Hibbins, A. P., Sambles, J. R., Lawrence, C. R., & Brown, J. R. (2004). Squeezing Millimeter Waves into Microns. Physical Review Letters, 92(14). doi:10.1103/physrevlett.92.143904

White, J. S., Veronis, G., Yu, Z., Barnard, E. S., Chandran, A., Fan, S., & Brongersma, M. L. (2009). Extraordinary optical absorption through subwavelength slits. Optics Letters, 34(5), 686. doi:10.1364/ol.34.000686

Stone, E. K., & Hendry, E. (2011). Dispersion of spoof surface plasmons in open-ended metallic hole arrays. Physical Review B, 84(3). doi:10.1103/physrevb.84.035418

Lansey, E., Hooper, I. R., Gollub, J. N., Hibbins, A. P., & Crouse, D. T. (2012). Light localization, photon sorting, and enhanced absorption in subwavelength cavity arrays. Optics Express, 20(22), 24226. doi:10.1364/oe.20.024226

Xiong, H., Hong, J.-S., Luo, C.-M., & Zhong, L.-L. (2013). An ultrathin and broadband metamaterial absorber using multi-layer structures. Journal of Applied Physics, 114(6), 064109. doi:10.1063/1.4818318

Avitzour, Y., Urzhumov, Y. A., & Shvets, G. (2009). Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Physical Review B, 79(4). doi:10.1103/physrevb.79.045131

Cui, Y., Fung, K. H., Xu, J., Ma, H., Jin, Y., He, S., & Fang, N. X. (2012). Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Letters, 12(3), 1443-1447. doi:10.1021/nl204118h

Ding, F., Cui, Y., Ge, X., Jin, Y., & He, S. (2012). Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 100(10), 103506. doi:10.1063/1.3692178

Díaz-Rubio, A., Torrent, D., Carbonell, J., & Sánchez-Dehesa, J. (2014). Extraordinary absorption by a thin dielectric slab backed with a metasurface. Physical Review B, 89(24). doi:10.1103/physrevb.89.245123

Holzman, E. L. (2006). Wideband measurement of the dielectric constant of an FR4 substrate using a parallel-coupled microstrip resonator. IEEE Transactions on Microwave Theory and Techniques, 54(7), 3127-3130. doi:10.1109/tmtt.2006.877061

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem