Mostrar el registro sencillo del ítem
dc.contributor.author | Díaz Rubio, Ana | es_ES |
dc.contributor.author | Hibbins, A.P. | es_ES |
dc.contributor.author | Carbonell Olivares, Jorge | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2016-05-20T09:02:32Z | |
dc.date.available | 2016-05-20T09:02:32Z | |
dc.date.issued | 2015-06-15 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.uri | http://hdl.handle.net/10251/64461 | |
dc.description.abstract | This work presents an experimental demonstration of total absorption by a metal-dielectric metasurface. Following a theoretical proposal [Dıaz-Rubio et al., Phys. Rev. B 89, 245123 (2014)], we have designed and fabricated a metasurface consisting of a low absorbing dielectric layer (made of FR4) placed on top of a metallic surface patterned with a square array of coaxial cavities. For p-polarized waves, a low frequency peak with perfect absorption is observed. The behavior of this peak has been experimentally characterized for different dielectric layer thicknesses, coaxial cavity lengths, and angles of incidence. The experimental results are in excellent agreement with numerical simulation and corroborate the theoretical predictions. | es_ES |
dc.description.sponsorship | This work was partially supported by the Spanish Ministerio de Economia y Competitividad (MINECO) under Contract No. TEC2010-19751 and the USA office of Naval Research, under Grant No. N000141210216. A. Hibbins acknowledges support from the UK Grant No. EEBB-I-1408331. We thank useful discussions with Daniel Torrent and the technical help of Benjamin Tremain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Applied Physics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Experimental verification of total absorption by a low-loss thin dielectric layer | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4922801 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N00014-12-1-0216/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//EEBB-I-14-08331/ES/EEBB-I-14-08331/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Díaz Rubio, A.; Hibbins, A.; Carbonell Olivares, J.; Sánchez-Dehesa Moreno-Cid, J. (2015). Experimental verification of total absorption by a low-loss thin dielectric layer. Applied Physics Letters. 106(24):241604-1-241604-5. https://doi.org/10.1063/1.4922801 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4922801 | es_ES |
dc.description.upvformatpinicio | 241604-1 | es_ES |
dc.description.upvformatpfin | 241604-5 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 106 | es_ES |
dc.description.issue | 24 | es_ES |
dc.relation.senia | 304213 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192 | es_ES |
dc.description.references | Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907 | es_ES |
dc.description.references | Cai, W., Genov, D. A., & Shalaev, V. M. (2005). Superlens based on metal-dielectric composites. Physical Review B, 72(19). doi:10.1103/physrevb.72.193101 | es_ES |
dc.description.references | Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect Metamaterial Absorber. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207402 | es_ES |
dc.description.references | Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., & Padilla, W. J. (2008). A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 16(10), 7181. doi:10.1364/oe.16.007181 | es_ES |
dc.description.references | Cheng, Y., Nie, Y., & Gong, R. (2013). A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Optics & Laser Technology, 48, 415-421. doi:10.1016/j.optlastec.2012.11.016 | es_ES |
dc.description.references | Hibbins, A. P., Sambles, J. R., Lawrence, C. R., & Brown, J. R. (2004). Squeezing Millimeter Waves into Microns. Physical Review Letters, 92(14). doi:10.1103/physrevlett.92.143904 | es_ES |
dc.description.references | White, J. S., Veronis, G., Yu, Z., Barnard, E. S., Chandran, A., Fan, S., & Brongersma, M. L. (2009). Extraordinary optical absorption through subwavelength slits. Optics Letters, 34(5), 686. doi:10.1364/ol.34.000686 | es_ES |
dc.description.references | Stone, E. K., & Hendry, E. (2011). Dispersion of spoof surface plasmons in open-ended metallic hole arrays. Physical Review B, 84(3). doi:10.1103/physrevb.84.035418 | es_ES |
dc.description.references | Lansey, E., Hooper, I. R., Gollub, J. N., Hibbins, A. P., & Crouse, D. T. (2012). Light localization, photon sorting, and enhanced absorption in subwavelength cavity arrays. Optics Express, 20(22), 24226. doi:10.1364/oe.20.024226 | es_ES |
dc.description.references | Xiong, H., Hong, J.-S., Luo, C.-M., & Zhong, L.-L. (2013). An ultrathin and broadband metamaterial absorber using multi-layer structures. Journal of Applied Physics, 114(6), 064109. doi:10.1063/1.4818318 | es_ES |
dc.description.references | Avitzour, Y., Urzhumov, Y. A., & Shvets, G. (2009). Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Physical Review B, 79(4). doi:10.1103/physrevb.79.045131 | es_ES |
dc.description.references | Cui, Y., Fung, K. H., Xu, J., Ma, H., Jin, Y., He, S., & Fang, N. X. (2012). Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Letters, 12(3), 1443-1447. doi:10.1021/nl204118h | es_ES |
dc.description.references | Ding, F., Cui, Y., Ge, X., Jin, Y., & He, S. (2012). Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 100(10), 103506. doi:10.1063/1.3692178 | es_ES |
dc.description.references | Díaz-Rubio, A., Torrent, D., Carbonell, J., & Sánchez-Dehesa, J. (2014). Extraordinary absorption by a thin dielectric slab backed with a metasurface. Physical Review B, 89(24). doi:10.1103/physrevb.89.245123 | es_ES |
dc.description.references | Holzman, E. L. (2006). Wideband measurement of the dielectric constant of an FR4 substrate using a parallel-coupled microstrip resonator. IEEE Transactions on Microwave Theory and Techniques, 54(7), 3127-3130. doi:10.1109/tmtt.2006.877061 | es_ES |