Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192
Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907
Cai, W., Genov, D. A., & Shalaev, V. M. (2005). Superlens based on metal-dielectric composites. Physical Review B, 72(19). doi:10.1103/physrevb.72.193101
[+]
Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192
Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907
Cai, W., Genov, D. A., & Shalaev, V. M. (2005). Superlens based on metal-dielectric composites. Physical Review B, 72(19). doi:10.1103/physrevb.72.193101
Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect Metamaterial Absorber. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207402
Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., & Padilla, W. J. (2008). A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 16(10), 7181. doi:10.1364/oe.16.007181
Cheng, Y., Nie, Y., & Gong, R. (2013). A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Optics & Laser Technology, 48, 415-421. doi:10.1016/j.optlastec.2012.11.016
Hibbins, A. P., Sambles, J. R., Lawrence, C. R., & Brown, J. R. (2004). Squeezing Millimeter Waves into Microns. Physical Review Letters, 92(14). doi:10.1103/physrevlett.92.143904
White, J. S., Veronis, G., Yu, Z., Barnard, E. S., Chandran, A., Fan, S., & Brongersma, M. L. (2009). Extraordinary optical absorption through subwavelength slits. Optics Letters, 34(5), 686. doi:10.1364/ol.34.000686
Stone, E. K., & Hendry, E. (2011). Dispersion of spoof surface plasmons in open-ended metallic hole arrays. Physical Review B, 84(3). doi:10.1103/physrevb.84.035418
Lansey, E., Hooper, I. R., Gollub, J. N., Hibbins, A. P., & Crouse, D. T. (2012). Light localization, photon sorting, and enhanced absorption in subwavelength cavity arrays. Optics Express, 20(22), 24226. doi:10.1364/oe.20.024226
Xiong, H., Hong, J.-S., Luo, C.-M., & Zhong, L.-L. (2013). An ultrathin and broadband metamaterial absorber using multi-layer structures. Journal of Applied Physics, 114(6), 064109. doi:10.1063/1.4818318
Avitzour, Y., Urzhumov, Y. A., & Shvets, G. (2009). Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Physical Review B, 79(4). doi:10.1103/physrevb.79.045131
Cui, Y., Fung, K. H., Xu, J., Ma, H., Jin, Y., He, S., & Fang, N. X. (2012). Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Letters, 12(3), 1443-1447. doi:10.1021/nl204118h
Ding, F., Cui, Y., Ge, X., Jin, Y., & He, S. (2012). Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 100(10), 103506. doi:10.1063/1.3692178
Díaz-Rubio, A., Torrent, D., Carbonell, J., & Sánchez-Dehesa, J. (2014). Extraordinary absorption by a thin dielectric slab backed with a metasurface. Physical Review B, 89(24). doi:10.1103/physrevb.89.245123
Holzman, E. L. (2006). Wideband measurement of the dielectric constant of an FR4 substrate using a parallel-coupled microstrip resonator. IEEE Transactions on Microwave Theory and Techniques, 54(7), 3127-3130. doi:10.1109/tmtt.2006.877061
[-]