- -

Numerical solution of turbulence problems by solving Burgers' equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical solution of turbulence problems by solving Burgers' equation

Mostrar el registro completo del ítem

Cordero Barbero, A.; Franqués García, AM.; Torregrosa Sánchez, JR. (2015). Numerical solution of turbulence problems by solving Burgers' equation. Algorithms. 8(2):224-233. doi:10.3390/a8020224

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64560

Ficheros en el ítem

Metadatos del ítem

Título: Numerical solution of turbulence problems by solving Burgers' equation
Autor: Cordero Barbero, Alicia Franqués García, Antonio María Torregrosa Sánchez, Juan Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
In this work we generate the numerical solutions of Burgers' equation by applying the Crank-Nicholson method and different schemes for solving nonlinear systems, instead of using Hopf-Cole transformation to reduce Burgers' ...[+]
Palabras clave: Burgers’ equation , Nonlinear system of equations , Newton’s scheme , High order iterative method
Derechos de uso: Reconocimiento (by)
Fuente:
Algorithms. (issn: 1999-4893 )
DOI: 10.3390/a8020224
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/a8020224
Tipo: Artículo

References

Lowrie, R. B. (2004). A comparison of implicit time integration methods for nonlinear relaxation and diffusion. Journal of Computational Physics, 196(2), 566-590. doi:10.1016/j.jcp.2003.11.016

An, H.-B., Mo, Z.-Y., Xu, X.-W., & Liu, X. (2009). On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations. Journal of Computational Physics, 228(9), 3268-3287. doi:10.1016/j.jcp.2009.01.024

Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0 [+]
Lowrie, R. B. (2004). A comparison of implicit time integration methods for nonlinear relaxation and diffusion. Journal of Computational Physics, 196(2), 566-590. doi:10.1016/j.jcp.2003.11.016

An, H.-B., Mo, Z.-Y., Xu, X.-W., & Liu, X. (2009). On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations. Journal of Computational Physics, 228(9), 3268-3287. doi:10.1016/j.jcp.2009.01.024

Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0

Willert, J., Park, H., & Knoll, D. A. (2014). A comparison of acceleration methods for solving the neutron transport k -eigenvalue problem. Journal of Computational Physics, 274, 681-694. doi:10.1016/j.jcp.2014.06.044

Andreu, C., Cambil, N., Cordero, A., & Torregrosa, J. R. (2013). Preliminary Orbit Determination of Artificial Satellites: A Vectorial Sixth-Order Approach. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/960582

Kadalbajoo, M. K., & Awasthi, A. (2006). A numerical method based on Crank-Nicolson scheme for Burgers’ equation. Applied Mathematics and Computation, 182(2), 1430-1442. doi:10.1016/j.amc.2006.05.030

Hassanien, I. A., Salama, A. A., & Hosham, H. A. (2005). Fourth-order finite difference method for solving Burgers’ equation. Applied Mathematics and Computation, 170(2), 781-800. doi:10.1016/j.amc.2004.12.052

Wani, S. S., & Thakar, S. H. (2013). Crank-Nicolson Type Method for Burgers Equation. International Journal of Applied Physics and Mathematics, 324-328. doi:10.7763/ijapm.2013.v3.230

Arroyo, V., Cordero, A., & Torregrosa, J. R. (2011). Approximation of artificial satellites’ preliminary orbits: The efficiency challenge. Mathematical and Computer Modelling, 54(7-8), 1802-1807. doi:10.1016/j.mcm.2010.11.063

Mittal, R. C., & Singhal, P. (1993). Numerical solution of Burger’s equation. Communications in Numerical Methods in Engineering, 9(5), 397-406. doi:10.1002/cnm.1640090505

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem