Lowrie, R. B. (2004). A comparison of implicit time integration methods for nonlinear relaxation and diffusion. Journal of Computational Physics, 196(2), 566-590. doi:10.1016/j.jcp.2003.11.016
An, H.-B., Mo, Z.-Y., Xu, X.-W., & Liu, X. (2009). On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations. Journal of Computational Physics, 228(9), 3268-3287. doi:10.1016/j.jcp.2009.01.024
Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0
[+]
Lowrie, R. B. (2004). A comparison of implicit time integration methods for nonlinear relaxation and diffusion. Journal of Computational Physics, 196(2), 566-590. doi:10.1016/j.jcp.2003.11.016
An, H.-B., Mo, Z.-Y., Xu, X.-W., & Liu, X. (2009). On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations. Journal of Computational Physics, 228(9), 3268-3287. doi:10.1016/j.jcp.2009.01.024
Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0
Willert, J., Park, H., & Knoll, D. A. (2014). A comparison of acceleration methods for solving the neutron transport k -eigenvalue problem. Journal of Computational Physics, 274, 681-694. doi:10.1016/j.jcp.2014.06.044
Andreu, C., Cambil, N., Cordero, A., & Torregrosa, J. R. (2013). Preliminary Orbit Determination of Artificial Satellites: A Vectorial Sixth-Order Approach. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/960582
Kadalbajoo, M. K., & Awasthi, A. (2006). A numerical method based on Crank-Nicolson scheme for Burgers’ equation. Applied Mathematics and Computation, 182(2), 1430-1442. doi:10.1016/j.amc.2006.05.030
Hassanien, I. A., Salama, A. A., & Hosham, H. A. (2005). Fourth-order finite difference method for solving Burgers’ equation. Applied Mathematics and Computation, 170(2), 781-800. doi:10.1016/j.amc.2004.12.052
Wani, S. S., & Thakar, S. H. (2013). Crank-Nicolson Type Method for Burgers Equation. International Journal of Applied Physics and Mathematics, 324-328. doi:10.7763/ijapm.2013.v3.230
Arroyo, V., Cordero, A., & Torregrosa, J. R. (2011). Approximation of artificial satellites’ preliminary orbits: The efficiency challenge. Mathematical and Computer Modelling, 54(7-8), 1802-1807. doi:10.1016/j.mcm.2010.11.063
Mittal, R. C., & Singhal, P. (1993). Numerical solution of Burger’s equation. Communications in Numerical Methods in Engineering, 9(5), 397-406. doi:10.1002/cnm.1640090505
[-]