Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Franqués García, Antonio María | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2016-05-23T08:19:46Z | |
dc.date.available | 2016-05-23T08:19:46Z | |
dc.date.issued | 2015-06 | |
dc.identifier.issn | 1999-4893 | |
dc.identifier.uri | http://hdl.handle.net/10251/64560 | |
dc.description.abstract | In this work we generate the numerical solutions of Burgers' equation by applying the Crank-Nicholson method and different schemes for solving nonlinear systems, instead of using Hopf-Cole transformation to reduce Burgers' equation into the linear heat equation. The method is analyzed on two test problems in order to check its efficiency on different kinds of initial conditions. Numerical solutions as well as exact solutions for different values of viscosity are calculated, concluding that the numerical results are very close to the exact solution. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Algorithms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Burgers’ equation | es_ES |
dc.subject | Nonlinear system of equations | es_ES |
dc.subject | Newton’s scheme | es_ES |
dc.subject | High order iterative method | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Numerical solution of turbulence problems by solving Burgers' equation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/a8020224 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Franqués García, AM.; Torregrosa Sánchez, JR. (2015). Numerical solution of turbulence problems by solving Burgers' equation. Algorithms. 8(2):224-233. doi:10.3390/a8020224 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/a8020224 | es_ES |
dc.description.upvformatpinicio | 224 | es_ES |
dc.description.upvformatpfin | 233 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 296816 | es_ES |
dc.description.references | Lowrie, R. B. (2004). A comparison of implicit time integration methods for nonlinear relaxation and diffusion. Journal of Computational Physics, 196(2), 566-590. doi:10.1016/j.jcp.2003.11.016 | es_ES |
dc.description.references | An, H.-B., Mo, Z.-Y., Xu, X.-W., & Liu, X. (2009). On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations. Journal of Computational Physics, 228(9), 3268-3287. doi:10.1016/j.jcp.2009.01.024 | es_ES |
dc.description.references | Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0 | es_ES |
dc.description.references | Willert, J., Park, H., & Knoll, D. A. (2014). A comparison of acceleration methods for solving the neutron transport k -eigenvalue problem. Journal of Computational Physics, 274, 681-694. doi:10.1016/j.jcp.2014.06.044 | es_ES |
dc.description.references | Andreu, C., Cambil, N., Cordero, A., & Torregrosa, J. R. (2013). Preliminary Orbit Determination of Artificial Satellites: A Vectorial Sixth-Order Approach. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/960582 | es_ES |
dc.description.references | Kadalbajoo, M. K., & Awasthi, A. (2006). A numerical method based on Crank-Nicolson scheme for Burgers’ equation. Applied Mathematics and Computation, 182(2), 1430-1442. doi:10.1016/j.amc.2006.05.030 | es_ES |
dc.description.references | Hassanien, I. A., Salama, A. A., & Hosham, H. A. (2005). Fourth-order finite difference method for solving Burgers’ equation. Applied Mathematics and Computation, 170(2), 781-800. doi:10.1016/j.amc.2004.12.052 | es_ES |
dc.description.references | Wani, S. S., & Thakar, S. H. (2013). Crank-Nicolson Type Method for Burgers Equation. International Journal of Applied Physics and Mathematics, 324-328. doi:10.7763/ijapm.2013.v3.230 | es_ES |
dc.description.references | Arroyo, V., Cordero, A., & Torregrosa, J. R. (2011). Approximation of artificial satellites’ preliminary orbits: The efficiency challenge. Mathematical and Computer Modelling, 54(7-8), 1802-1807. doi:10.1016/j.mcm.2010.11.063 | es_ES |
dc.description.references | Mittal, R. C., & Singhal, P. (1993). Numerical solution of Burger’s equation. Communications in Numerical Methods in Engineering, 9(5), 397-406. doi:10.1002/cnm.1640090505 | es_ES |