- -

Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms

Mostrar el registro completo del ítem

Ródenas, J.; García, M.; Alcaraz, R.; Rieta, JJ. (2015). Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. Entropy. 17(9):6179-6199. https://doi.org/10.3390/e17096179

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64657

Ficheros en el ítem

Metadatos del ítem

Título: Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms
Autor: Ródenas, Juan García, Manuel Alcaraz, Raúl Rieta, J J
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
This work introduces for the first time the application of wavelet entropy (WE) to detect episodes of the most common cardiac arrhythmia, atrial fibrillation (AF), automatically from the electrocardiogram (ECG). Given that ...[+]
Palabras clave: Atrial fibrillation , Electrocardiogram , Wavelet entropy , Wavelet transform
Derechos de uso: Reconocimiento (by)
Fuente:
Entropy. (issn: 1099-4300 )
DOI: 10.3390/e17096179
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/e17096179
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2014-52250-R/ES/CUANTIFICACION DEL REMODELADO ELECTROANATOMICO EN ARRITMIAS CARDIACAS. DE LA INVESTIGACION A LA TERAPIA PERSONALIZADA./
info:eu-repo/grantAgreement/JCCM//PPII-2014-026-P/
Agradecimientos:
This work was supported by the projects TEC2014-52250-R from the Spanish Ministry of Economy and Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla La Mancha.
Tipo: Artículo

References

Drachman, D. A. (2006). Aging of the brain, entropy, and Alzheimer disease. Neurology, 67(8), 1340-1352. doi:10.1212/01.wnl.0000240127.89601.83

Schulz, S., Bär, K.-J., & Voss, A. (2015). Analyses of Heart Rate, Respiration and Cardiorespiratory Coupling in Patients with Schizophrenia. Entropy, 17(2), 483-501. doi:10.3390/e17020483

Du, Q., Nie, K., & Wang, Z. (2014). Application of Entropy-Based Attribute Reduction and an Artificial Neural Network in Medicine: A Case Study of Estimating Medical Care Costs Associated with Myocardial Infarction. Entropy, 16(9), 4788-4800. doi:10.3390/e16094788 [+]
Drachman, D. A. (2006). Aging of the brain, entropy, and Alzheimer disease. Neurology, 67(8), 1340-1352. doi:10.1212/01.wnl.0000240127.89601.83

Schulz, S., Bär, K.-J., & Voss, A. (2015). Analyses of Heart Rate, Respiration and Cardiorespiratory Coupling in Patients with Schizophrenia. Entropy, 17(2), 483-501. doi:10.3390/e17020483

Du, Q., Nie, K., & Wang, Z. (2014). Application of Entropy-Based Attribute Reduction and an Artificial Neural Network in Medicine: A Case Study of Estimating Medical Care Costs Associated with Myocardial Infarction. Entropy, 16(9), 4788-4800. doi:10.3390/e16094788

Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001

Umar, H. (2002). Clinical decision-making using computers: opportunities and limitations. Dental Clinics of North America, 46(3), 521-538. doi:10.1016/s0011-8532(02)00008-3

Belle, A., Kon, M. A., & Najarian, K. (2013). Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey. The Scientific World Journal, 2013, 1-8. doi:10.1155/2013/769639

Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., & Başar, E. (2001). Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65-75. doi:10.1016/s0165-0270(00)00356-3

Frantzidis, C. A., Vivas, A. B., Tsolaki, A., Klados, M. A., Tsolaki, M., & Bamidis, P. D. (2014). Functional disorganization of small-world brain networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE). Frontiers in Aging Neuroscience, 6. doi:10.3389/fnagi.2014.00224

Alcaraz, R., & Rieta, J. J. (2012). Application of Wavelet Entropy to Predict Atrial Fibrillation Progression from the Surface ECG. Computational and Mathematical Methods in Medicine, 2012, 1-9. doi:10.1155/2012/245213

Xu, P., Hu, X., & Yao, D. (2013). Improved wavelet entropy calculation with window functions and its preliminary application to study intracranial pressure. Computers in Biology and Medicine, 43(5), 425-433. doi:10.1016/j.compbiomed.2013.01.022

Emre Cek, M., Ozgoren, M., & Acar Savaci, F. (2010). Continuous time wavelet entropy of auditory evoked potentials. Computers in Biology and Medicine, 40(1), 90-96. doi:10.1016/j.compbiomed.2009.11.005

Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., … Wann, L. S. (2011). 2011 ACCF/AHA/HRS Focused Updates Incorporated Into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 123(10). doi:10.1161/cir.0b013e318214876d

Gillis, A. M., Krahn, A. D., Skanes, A. C., & Nattel, S. (2013). Management of Atrial Fibrillation in the Year 2033: New Concepts, Tools, and Applications Leading to Personalized Medicine. Canadian Journal of Cardiology, 29(10), 1141-1146. doi:10.1016/j.cjca.2013.07.006

January, C. T., Wann, L. S., Alpert, J. S., Calkins, H., Cigarroa, J. E., Cleveland, J. C., … Yancy, C. W. (2014). 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. Circulation, 130(23). doi:10.1161/cir.0000000000000041

Hart, R. G., Pearce, L. A., & Aguilar, M. I. (2007). Meta-analysis: Antithrombotic Therapy to Prevent Stroke in Patients Who Have Nonvalvular Atrial Fibrillation. Annals of Internal Medicine, 146(12), 857. doi:10.7326/0003-4819-146-12-200706190-00007

Blomstrom Lundqvist, C., Lip, G. Y. H., & Kirchhof, P. (2011). What are the costs of atrial fibrillation? Europace, 13(suppl 2), ii9-ii12. doi:10.1093/europace/eur087

Asgari, S., Mehrnia, A., & Moussavi, M. (2015). Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Computers in Biology and Medicine, 60, 132-142. doi:10.1016/j.compbiomed.2015.03.005

Israel, C. W., Grönefeld, G., Ehrlich, J. R., Li, Y.-G., & Hohnloser, S. H. (2004). Long-term risk of recurrent atrial fibrillation as documented by an implantable monitoring device. Journal of the American College of Cardiology, 43(1), 47-52. doi:10.1016/j.jacc.2003.08.027

Xiong, Q., Proietti, M., Senoo, K., & Lip, G. Y. H. (2015). Asymptomatic versus symptomatic atrial fibrillation: A systematic review of age/gender differences and cardiovascular outcomes. International Journal of Cardiology, 191, 172-177. doi:10.1016/j.ijcard.2015.05.011

Strickberger, S. A., Ip, J., Saksena, S., Curry, K., Bahnson, T. D., & Ziegler, P. D. (2005). Relationship between atrial tachyarrhythmias and symptoms. Heart Rhythm, 2(2), 125-131. doi:10.1016/j.hrthm.2004.10.042

Quinn, F. R., & Gladstone, D. (2014). Screening for undiagnosed atrial fibrillation in the community. Current Opinion in Cardiology, 29(1), 28-35. doi:10.1097/hco.0000000000000018

Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn, S., & Sahakian, A. V. (2006). Atrial fibrillation and waveform characterization. IEEE Engineering in Medicine and Biology Magazine, 25(6), 24-30. doi:10.1109/emb-m.2006.250505

Slocum, J., Sahakian, A., & Swiryn, S. (1992). Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. Journal of Electrocardiology, 25(1), 1-8. doi:10.1016/0022-0736(92)90123-h

Ladavich, S., & Ghoraani, B. (2015). Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomedical Signal Processing and Control, 18, 274-281. doi:10.1016/j.bspc.2015.01.007

ZHANG, Y., & MAZGALEV, T. N. (2004). Ventricular Rate Control During Atrial Fibrillation and AV Node Modifications: Pacing and Clinical Electrophysiology, 27(3), 382-393. doi:10.1111/j.1540-8159.2004.00447.x

Tateno, K., & Glass, L. (2001). Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Medical & Biological Engineering & Computing, 39(6), 664-671. doi:10.1007/bf02345439

Dash, S., Chon, K. H., Lu, S., & Raeder, E. A. (2009). Automatic Real Time Detection of Atrial Fibrillation. Annals of Biomedical Engineering, 37(9), 1701-1709. doi:10.1007/s10439-009-9740-z

Chao Huang, Shuming Ye, Hang Chen, Dingli Li, Fangtian He, & Yuewen Tu. (2011). A Novel Method for Detection of the Transition Between Atrial Fibrillation and Sinus Rhythm. IEEE Transactions on Biomedical Engineering, 58(4), 1113-1119. doi:10.1109/tbme.2010.2096506

Lake, D. E., & Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. American Journal of Physiology-Heart and Circulatory Physiology, 300(1), H319-H325. doi:10.1152/ajpheart.00561.2010

Lee, J., Reyes, B. A., McManus, D. D., Maitas, O., & Chon, K. H. (2013). Atrial Fibrillation Detection Using an iPhone 4S. IEEE Transactions on Biomedical Engineering, 60(1), 203-206. doi:10.1109/tbme.2012.2208112

Zhou, X., Ding, H., Ung, B., Pickwell-MacPherson, E., & Zhang, Y. (2014). Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. BioMedical Engineering OnLine, 13(1), 18. doi:10.1186/1475-925x-13-18

Seet, R. C. S., Friedman, P. A., & Rabinstein, A. A. (2011). Prolonged Rhythm Monitoring for the Detection of Occult Paroxysmal Atrial Fibrillation in Ischemic Stroke of Unknown Cause. Circulation, 124(4), 477-486. doi:10.1161/circulationaha.111.029801

Babaeizadeh, S., Gregg, R. E., Helfenbein, E. D., Lindauer, J. M., & Zhou, S. H. (2009). Improvements in atrial fibrillation detection for real-time monitoring. Journal of Electrocardiology, 42(6), 522-526. doi:10.1016/j.jelectrocard.2009.06.006

Jiang, K., Huang, C., Ye, S., & Chen, H. (2012). High accuracy in automatic detection of atrial fibrillation for Holter monitoring. Journal of Zhejiang University SCIENCE B, 13(9), 751-756. doi:10.1631/jzus.b1200107

Pürerfellner, H., Pokushalov, E., Sarkar, S., Koehler, J., Zhou, R., Urban, L., & Hindricks, G. (2014). P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors. Heart Rhythm, 11(9), 1575-1583. doi:10.1016/j.hrthm.2014.06.006

Du, X., Rao, N., Qian, M., Liu, D., Li, J., Feng, W., … Chen, X. (2013). A Novel Method for Real-Time Atrial Fibrillation Detection in Electrocardiograms Using Multiple Parameters. Annals of Noninvasive Electrocardiology, 19(3), 217-225. doi:10.1111/anec.12111

Petrėnas, A., Sörnmo, L., Lukoševičius, A., & Marozas, V. (2014). Detection of occult paroxysmal atrial fibrillation. Medical & Biological Engineering & Computing, 53(4), 287-297. doi:10.1007/s11517-014-1234-y

LEVY, S. (1998). Atrial fibrillation: current knowledge and recommendations for management*1. European Heart Journal, 19(9), 1294-1320. doi:10.1053/euhj.1998.1050

HOLMQVIST, F., CARLSON, J., WAKTARE, J. E. P., & PLATONOV, P. G. (2009). Noninvasive Evidence of Shortened Atrial Refractoriness during Sinus Rhythm in Patients with Paroxysmal Atrial Fibrillation. Pacing and Clinical Electrophysiology, 32(3), 302-307. doi:10.1111/j.1540-8159.2008.02236.x

Blanche, C., Tran, N., Carballo, D., Rigamonti, F., Burri, H., & Zimmermann, M. (2014). Usefulness of P-Wave Signal Averaging to Predict Atrial Fibrillation Recurrences after Electrical Cardioversion. Annals of Noninvasive Electrocardiology, 19(3), 266-272. doi:10.1111/anec.12131

Blanche, C., Tran, N., Rigamonti, F., Burri, H., & Zimmermann, M. (2012). Value of P-wave signal averaging to predict atrial fibrillation recurrences after pulmonary vein isolation. EP Europace, 15(2), 198-204. doi:10.1093/europace/eus251

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215

Taha, B., Reddy, S., Xue, Q., & Swiryn, S. (2000). Automated discrimination between atrial fibrillation and atrial flutter in the resting 12-lead electrocardiogram. Journal of Electrocardiology, 33, 123-125. doi:10.1054/jelc.2000.20303

Christov, G. Bortolan, I. Daskalov, I. (2001). Automatic detection of atrial fibrillation and flutter by wave rectification method. Journal of Medical Engineering & Technology, 25(5), 217-221. doi:10.1080/03091900110065942

Dotsinsky, I., & Stoyanov, T. (2004). Optimization of bi-directional digital filtering for drift suppression in electrocardiogram signals. Journal of Medical Engineering & Technology, 28(4), 178-180. doi:10.1080/03091900410001675996

Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005

Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26(5), R155-R199. doi:10.1088/0967-3334/26/5/r01

Rafiee, J., Rafiee, M. A., Prause, N., & Schoen, M. P. (2011). Wavelet basis functions in biomedical signal processing. Expert Systems with Applications, 38(5), 6190-6201. doi:10.1016/j.eswa.2010.11.050

Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054

Liu, C., Li, P., Di Maria, C., Zhao, L., Zhang, H., & Chen, Z. (2014). A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings. Physiological Measurement, 35(8), 1665-1683. doi:10.1088/0967-3334/35/8/1665

CENSI, F., RICCI, C., CALCAGNINI, G., TRIVENTI, M., RICCI, R. P., SANTINI, M., & BARTOLINI, P. (2008). Time-Domain and Morphological Analysis of the P-Wave. Part I: Technical Aspects for Automatic Quantification of P-Wave Features. Pacing and Clinical Electrophysiology, 31(7), 874-883. doi:10.1111/j.1540-8159.2008.01102.x

Jinseok Lee, Yunyoung Nam, McManus, D. D., & Chon, K. H. (2013). Time-Varying Coherence Function for Atrial Fibrillation Detection. IEEE Transactions on Biomedical Engineering, 60(10), 2783-2793. doi:10.1109/tbme.2013.2264721

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem