Drachman, D. A. (2006). Aging of the brain, entropy, and Alzheimer disease. Neurology, 67(8), 1340-1352. doi:10.1212/01.wnl.0000240127.89601.83
Schulz, S., Bär, K.-J., & Voss, A. (2015). Analyses of Heart Rate, Respiration and Cardiorespiratory Coupling in Patients with Schizophrenia. Entropy, 17(2), 483-501. doi:10.3390/e17020483
Du, Q., Nie, K., & Wang, Z. (2014). Application of Entropy-Based Attribute Reduction and an Artificial Neural Network in Medicine: A Case Study of Estimating Medical Care Costs Associated with Myocardial Infarction. Entropy, 16(9), 4788-4800. doi:10.3390/e16094788
[+]
Drachman, D. A. (2006). Aging of the brain, entropy, and Alzheimer disease. Neurology, 67(8), 1340-1352. doi:10.1212/01.wnl.0000240127.89601.83
Schulz, S., Bär, K.-J., & Voss, A. (2015). Analyses of Heart Rate, Respiration and Cardiorespiratory Coupling in Patients with Schizophrenia. Entropy, 17(2), 483-501. doi:10.3390/e17020483
Du, Q., Nie, K., & Wang, Z. (2014). Application of Entropy-Based Attribute Reduction and an Artificial Neural Network in Medicine: A Case Study of Estimating Medical Care Costs Associated with Myocardial Infarction. Entropy, 16(9), 4788-4800. doi:10.3390/e16094788
Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001
Umar, H. (2002). Clinical decision-making using computers: opportunities and limitations. Dental Clinics of North America, 46(3), 521-538. doi:10.1016/s0011-8532(02)00008-3
Belle, A., Kon, M. A., & Najarian, K. (2013). Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey. The Scientific World Journal, 2013, 1-8. doi:10.1155/2013/769639
Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., & Başar, E. (2001). Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65-75. doi:10.1016/s0165-0270(00)00356-3
Frantzidis, C. A., Vivas, A. B., Tsolaki, A., Klados, M. A., Tsolaki, M., & Bamidis, P. D. (2014). Functional disorganization of small-world brain networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE). Frontiers in Aging Neuroscience, 6. doi:10.3389/fnagi.2014.00224
Alcaraz, R., & Rieta, J. J. (2012). Application of Wavelet Entropy to Predict Atrial Fibrillation Progression from the Surface ECG. Computational and Mathematical Methods in Medicine, 2012, 1-9. doi:10.1155/2012/245213
Xu, P., Hu, X., & Yao, D. (2013). Improved wavelet entropy calculation with window functions and its preliminary application to study intracranial pressure. Computers in Biology and Medicine, 43(5), 425-433. doi:10.1016/j.compbiomed.2013.01.022
Emre Cek, M., Ozgoren, M., & Acar Savaci, F. (2010). Continuous time wavelet entropy of auditory evoked potentials. Computers in Biology and Medicine, 40(1), 90-96. doi:10.1016/j.compbiomed.2009.11.005
Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., … Wann, L. S. (2011). 2011 ACCF/AHA/HRS Focused Updates Incorporated Into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 123(10). doi:10.1161/cir.0b013e318214876d
Gillis, A. M., Krahn, A. D., Skanes, A. C., & Nattel, S. (2013). Management of Atrial Fibrillation in the Year 2033: New Concepts, Tools, and Applications Leading to Personalized Medicine. Canadian Journal of Cardiology, 29(10), 1141-1146. doi:10.1016/j.cjca.2013.07.006
January, C. T., Wann, L. S., Alpert, J. S., Calkins, H., Cigarroa, J. E., Cleveland, J. C., … Yancy, C. W. (2014). 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. Circulation, 130(23). doi:10.1161/cir.0000000000000041
Hart, R. G., Pearce, L. A., & Aguilar, M. I. (2007). Meta-analysis: Antithrombotic Therapy to Prevent Stroke in Patients Who Have Nonvalvular Atrial Fibrillation. Annals of Internal Medicine, 146(12), 857. doi:10.7326/0003-4819-146-12-200706190-00007
Blomstrom Lundqvist, C., Lip, G. Y. H., & Kirchhof, P. (2011). What are the costs of atrial fibrillation? Europace, 13(suppl 2), ii9-ii12. doi:10.1093/europace/eur087
Asgari, S., Mehrnia, A., & Moussavi, M. (2015). Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Computers in Biology and Medicine, 60, 132-142. doi:10.1016/j.compbiomed.2015.03.005
Israel, C. W., Grönefeld, G., Ehrlich, J. R., Li, Y.-G., & Hohnloser, S. H. (2004). Long-term risk of recurrent atrial fibrillation as documented by an implantable monitoring device. Journal of the American College of Cardiology, 43(1), 47-52. doi:10.1016/j.jacc.2003.08.027
Xiong, Q., Proietti, M., Senoo, K., & Lip, G. Y. H. (2015). Asymptomatic versus symptomatic atrial fibrillation: A systematic review of age/gender differences and cardiovascular outcomes. International Journal of Cardiology, 191, 172-177. doi:10.1016/j.ijcard.2015.05.011
Strickberger, S. A., Ip, J., Saksena, S., Curry, K., Bahnson, T. D., & Ziegler, P. D. (2005). Relationship between atrial tachyarrhythmias and symptoms. Heart Rhythm, 2(2), 125-131. doi:10.1016/j.hrthm.2004.10.042
Quinn, F. R., & Gladstone, D. (2014). Screening for undiagnosed atrial fibrillation in the community. Current Opinion in Cardiology, 29(1), 28-35. doi:10.1097/hco.0000000000000018
Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn, S., & Sahakian, A. V. (2006). Atrial fibrillation and waveform characterization. IEEE Engineering in Medicine and Biology Magazine, 25(6), 24-30. doi:10.1109/emb-m.2006.250505
Slocum, J., Sahakian, A., & Swiryn, S. (1992). Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. Journal of Electrocardiology, 25(1), 1-8. doi:10.1016/0022-0736(92)90123-h
Ladavich, S., & Ghoraani, B. (2015). Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomedical Signal Processing and Control, 18, 274-281. doi:10.1016/j.bspc.2015.01.007
ZHANG, Y., & MAZGALEV, T. N. (2004). Ventricular Rate Control During Atrial Fibrillation and AV Node Modifications: Pacing and Clinical Electrophysiology, 27(3), 382-393. doi:10.1111/j.1540-8159.2004.00447.x
Tateno, K., & Glass, L. (2001). Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Medical & Biological Engineering & Computing, 39(6), 664-671. doi:10.1007/bf02345439
Dash, S., Chon, K. H., Lu, S., & Raeder, E. A. (2009). Automatic Real Time Detection of Atrial Fibrillation. Annals of Biomedical Engineering, 37(9), 1701-1709. doi:10.1007/s10439-009-9740-z
Chao Huang, Shuming Ye, Hang Chen, Dingli Li, Fangtian He, & Yuewen Tu. (2011). A Novel Method for Detection of the Transition Between Atrial Fibrillation and Sinus Rhythm. IEEE Transactions on Biomedical Engineering, 58(4), 1113-1119. doi:10.1109/tbme.2010.2096506
Lake, D. E., & Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. American Journal of Physiology-Heart and Circulatory Physiology, 300(1), H319-H325. doi:10.1152/ajpheart.00561.2010
Lee, J., Reyes, B. A., McManus, D. D., Maitas, O., & Chon, K. H. (2013). Atrial Fibrillation Detection Using an iPhone 4S. IEEE Transactions on Biomedical Engineering, 60(1), 203-206. doi:10.1109/tbme.2012.2208112
Zhou, X., Ding, H., Ung, B., Pickwell-MacPherson, E., & Zhang, Y. (2014). Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. BioMedical Engineering OnLine, 13(1), 18. doi:10.1186/1475-925x-13-18
Seet, R. C. S., Friedman, P. A., & Rabinstein, A. A. (2011). Prolonged Rhythm Monitoring for the Detection of Occult Paroxysmal Atrial Fibrillation in Ischemic Stroke of Unknown Cause. Circulation, 124(4), 477-486. doi:10.1161/circulationaha.111.029801
Babaeizadeh, S., Gregg, R. E., Helfenbein, E. D., Lindauer, J. M., & Zhou, S. H. (2009). Improvements in atrial fibrillation detection for real-time monitoring. Journal of Electrocardiology, 42(6), 522-526. doi:10.1016/j.jelectrocard.2009.06.006
Jiang, K., Huang, C., Ye, S., & Chen, H. (2012). High accuracy in automatic detection of atrial fibrillation for Holter monitoring. Journal of Zhejiang University SCIENCE B, 13(9), 751-756. doi:10.1631/jzus.b1200107
Pürerfellner, H., Pokushalov, E., Sarkar, S., Koehler, J., Zhou, R., Urban, L., & Hindricks, G. (2014). P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors. Heart Rhythm, 11(9), 1575-1583. doi:10.1016/j.hrthm.2014.06.006
Du, X., Rao, N., Qian, M., Liu, D., Li, J., Feng, W., … Chen, X. (2013). A Novel Method for Real-Time Atrial Fibrillation Detection in Electrocardiograms Using Multiple Parameters. Annals of Noninvasive Electrocardiology, 19(3), 217-225. doi:10.1111/anec.12111
Petrėnas, A., Sörnmo, L., Lukoševičius, A., & Marozas, V. (2014). Detection of occult paroxysmal atrial fibrillation. Medical & Biological Engineering & Computing, 53(4), 287-297. doi:10.1007/s11517-014-1234-y
LEVY, S. (1998). Atrial fibrillation: current knowledge and recommendations for management*1. European Heart Journal, 19(9), 1294-1320. doi:10.1053/euhj.1998.1050
HOLMQVIST, F., CARLSON, J., WAKTARE, J. E. P., & PLATONOV, P. G. (2009). Noninvasive Evidence of Shortened Atrial Refractoriness during Sinus Rhythm in Patients with Paroxysmal Atrial Fibrillation. Pacing and Clinical Electrophysiology, 32(3), 302-307. doi:10.1111/j.1540-8159.2008.02236.x
Blanche, C., Tran, N., Carballo, D., Rigamonti, F., Burri, H., & Zimmermann, M. (2014). Usefulness of P-Wave Signal Averaging to Predict Atrial Fibrillation Recurrences after Electrical Cardioversion. Annals of Noninvasive Electrocardiology, 19(3), 266-272. doi:10.1111/anec.12131
Blanche, C., Tran, N., Rigamonti, F., Burri, H., & Zimmermann, M. (2012). Value of P-wave signal averaging to predict atrial fibrillation recurrences after pulmonary vein isolation. EP Europace, 15(2), 198-204. doi:10.1093/europace/eus251
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215
Taha, B., Reddy, S., Xue, Q., & Swiryn, S. (2000). Automated discrimination between atrial fibrillation and atrial flutter in the resting 12-lead electrocardiogram. Journal of Electrocardiology, 33, 123-125. doi:10.1054/jelc.2000.20303
Christov, G. Bortolan, I. Daskalov, I. (2001). Automatic detection of atrial fibrillation and flutter by wave rectification method. Journal of Medical Engineering & Technology, 25(5), 217-221. doi:10.1080/03091900110065942
Dotsinsky, I., & Stoyanov, T. (2004). Optimization of bi-directional digital filtering for drift suppression in electrocardiogram signals. Journal of Medical Engineering & Technology, 28(4), 178-180. doi:10.1080/03091900410001675996
Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005
Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26(5), R155-R199. doi:10.1088/0967-3334/26/5/r01
Rafiee, J., Rafiee, M. A., Prause, N., & Schoen, M. P. (2011). Wavelet basis functions in biomedical signal processing. Expert Systems with Applications, 38(5), 6190-6201. doi:10.1016/j.eswa.2010.11.050
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054
Liu, C., Li, P., Di Maria, C., Zhao, L., Zhang, H., & Chen, Z. (2014). A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings. Physiological Measurement, 35(8), 1665-1683. doi:10.1088/0967-3334/35/8/1665
CENSI, F., RICCI, C., CALCAGNINI, G., TRIVENTI, M., RICCI, R. P., SANTINI, M., & BARTOLINI, P. (2008). Time-Domain and Morphological Analysis of the P-Wave. Part I: Technical Aspects for Automatic Quantification of P-Wave Features. Pacing and Clinical Electrophysiology, 31(7), 874-883. doi:10.1111/j.1540-8159.2008.01102.x
Jinseok Lee, Yunyoung Nam, McManus, D. D., & Chon, K. H. (2013). Time-Varying Coherence Function for Atrial Fibrillation Detection. IEEE Transactions on Biomedical Engineering, 60(10), 2783-2793. doi:10.1109/tbme.2013.2264721
[-]