- -

Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ródenas, Juan es_ES
dc.contributor.author García, Manuel es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2016-05-24T11:25:20Z
dc.date.available 2016-05-24T11:25:20Z
dc.date.issued 2015-09
dc.identifier.issn 1099-4300
dc.identifier.uri http://hdl.handle.net/10251/64657
dc.description.abstract This work introduces for the first time the application of wavelet entropy (WE) to detect episodes of the most common cardiac arrhythmia, atrial fibrillation (AF), automatically from the electrocardiogram (ECG). Given that AF is often asymptomatic and usually presents very brief initial episodes, its early automatic detection is clinically relevant to improve AF treatment and prevent risks for the patients. After discarding noisy TQ intervals from the ECG, the WE has been computed over the median TQ segment obtained from the 10 previous noise-free beats under study. In this way, the P-waves or the fibrillatory waves present in the recording were highlighted or attenuated, respectively, thus enabling the patient's rhythm identification (sinus rhythm or AF). Results provided a discriminant ability of about 95%, which is comparable to previous works. However, in contrast to most of them, which are mainly based on quantifying RR series variability, the proposed algorithm is able to deal with patients under rate-control therapy or with a reduced heart rate variability during AF. Additionally, it also presents interesting properties, such as the lowest delay in detecting AF or sinus rhythm, the ability to detect episodes as brief as five beats in length or its integration facilities under real-time beat-by-beat ECG monitoring systems. Consequently, this tool may help clinicians in the automatic detection of a wide variety of AF episodes, thus gaining further knowledge about the mechanisms initiating this arrhythmia. es_ES
dc.description.sponsorship This work was supported by the projects TEC2014-52250-R from the Spanish Ministry of Economy and Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Electrocardiogram es_ES
dc.subject Wavelet entropy es_ES
dc.subject Wavelet transform es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e17096179
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52250-R/ES/CUANTIFICACION DEL REMODELADO ELECTROANATOMICO EN ARRITMIAS CARDIACAS. DE LA INVESTIGACION A LA TERAPIA PERSONALIZADA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//PPII-2014-026-P/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ródenas, J.; García, M.; Alcaraz, R.; Rieta, JJ. (2015). Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. Entropy. 17(9):6179-6199. https://doi.org/10.3390/e17096179 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/e17096179 es_ES
dc.description.upvformatpinicio 6179 es_ES
dc.description.upvformatpfin 6199 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 302091 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Drachman, D. A. (2006). Aging of the brain, entropy, and Alzheimer disease. Neurology, 67(8), 1340-1352. doi:10.1212/01.wnl.0000240127.89601.83 es_ES
dc.description.references Schulz, S., Bär, K.-J., & Voss, A. (2015). Analyses of Heart Rate, Respiration and Cardiorespiratory Coupling in Patients with Schizophrenia. Entropy, 17(2), 483-501. doi:10.3390/e17020483 es_ES
dc.description.references Du, Q., Nie, K., & Wang, Z. (2014). Application of Entropy-Based Attribute Reduction and an Artificial Neural Network in Medicine: A Case Study of Estimating Medical Care Costs Associated with Myocardial Infarction. Entropy, 16(9), 4788-4800. doi:10.3390/e16094788 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001 es_ES
dc.description.references Umar, H. (2002). Clinical decision-making using computers: opportunities and limitations. Dental Clinics of North America, 46(3), 521-538. doi:10.1016/s0011-8532(02)00008-3 es_ES
dc.description.references Belle, A., Kon, M. A., & Najarian, K. (2013). Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey. The Scientific World Journal, 2013, 1-8. doi:10.1155/2013/769639 es_ES
dc.description.references Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., & Başar, E. (2001). Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65-75. doi:10.1016/s0165-0270(00)00356-3 es_ES
dc.description.references Frantzidis, C. A., Vivas, A. B., Tsolaki, A., Klados, M. A., Tsolaki, M., & Bamidis, P. D. (2014). Functional disorganization of small-world brain networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE). Frontiers in Aging Neuroscience, 6. doi:10.3389/fnagi.2014.00224 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2012). Application of Wavelet Entropy to Predict Atrial Fibrillation Progression from the Surface ECG. Computational and Mathematical Methods in Medicine, 2012, 1-9. doi:10.1155/2012/245213 es_ES
dc.description.references Xu, P., Hu, X., & Yao, D. (2013). Improved wavelet entropy calculation with window functions and its preliminary application to study intracranial pressure. Computers in Biology and Medicine, 43(5), 425-433. doi:10.1016/j.compbiomed.2013.01.022 es_ES
dc.description.references Emre Cek, M., Ozgoren, M., & Acar Savaci, F. (2010). Continuous time wavelet entropy of auditory evoked potentials. Computers in Biology and Medicine, 40(1), 90-96. doi:10.1016/j.compbiomed.2009.11.005 es_ES
dc.description.references Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., … Wann, L. S. (2011). 2011 ACCF/AHA/HRS Focused Updates Incorporated Into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 123(10). doi:10.1161/cir.0b013e318214876d es_ES
dc.description.references Gillis, A. M., Krahn, A. D., Skanes, A. C., & Nattel, S. (2013). Management of Atrial Fibrillation in the Year 2033: New Concepts, Tools, and Applications Leading to Personalized Medicine. Canadian Journal of Cardiology, 29(10), 1141-1146. doi:10.1016/j.cjca.2013.07.006 es_ES
dc.description.references January, C. T., Wann, L. S., Alpert, J. S., Calkins, H., Cigarroa, J. E., Cleveland, J. C., … Yancy, C. W. (2014). 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. Circulation, 130(23). doi:10.1161/cir.0000000000000041 es_ES
dc.description.references Hart, R. G., Pearce, L. A., & Aguilar, M. I. (2007). Meta-analysis: Antithrombotic Therapy to Prevent Stroke in Patients Who Have Nonvalvular Atrial Fibrillation. Annals of Internal Medicine, 146(12), 857. doi:10.7326/0003-4819-146-12-200706190-00007 es_ES
dc.description.references Blomstrom Lundqvist, C., Lip, G. Y. H., & Kirchhof, P. (2011). What are the costs of atrial fibrillation? Europace, 13(suppl 2), ii9-ii12. doi:10.1093/europace/eur087 es_ES
dc.description.references Asgari, S., Mehrnia, A., & Moussavi, M. (2015). Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Computers in Biology and Medicine, 60, 132-142. doi:10.1016/j.compbiomed.2015.03.005 es_ES
dc.description.references Israel, C. W., Grönefeld, G., Ehrlich, J. R., Li, Y.-G., & Hohnloser, S. H. (2004). Long-term risk of recurrent atrial fibrillation as documented by an implantable monitoring device. Journal of the American College of Cardiology, 43(1), 47-52. doi:10.1016/j.jacc.2003.08.027 es_ES
dc.description.references Xiong, Q., Proietti, M., Senoo, K., & Lip, G. Y. H. (2015). Asymptomatic versus symptomatic atrial fibrillation: A systematic review of age/gender differences and cardiovascular outcomes. International Journal of Cardiology, 191, 172-177. doi:10.1016/j.ijcard.2015.05.011 es_ES
dc.description.references Strickberger, S. A., Ip, J., Saksena, S., Curry, K., Bahnson, T. D., & Ziegler, P. D. (2005). Relationship between atrial tachyarrhythmias and symptoms. Heart Rhythm, 2(2), 125-131. doi:10.1016/j.hrthm.2004.10.042 es_ES
dc.description.references Quinn, F. R., & Gladstone, D. (2014). Screening for undiagnosed atrial fibrillation in the community. Current Opinion in Cardiology, 29(1), 28-35. doi:10.1097/hco.0000000000000018 es_ES
dc.description.references Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn, S., & Sahakian, A. V. (2006). Atrial fibrillation and waveform characterization. IEEE Engineering in Medicine and Biology Magazine, 25(6), 24-30. doi:10.1109/emb-m.2006.250505 es_ES
dc.description.references Slocum, J., Sahakian, A., & Swiryn, S. (1992). Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. Journal of Electrocardiology, 25(1), 1-8. doi:10.1016/0022-0736(92)90123-h es_ES
dc.description.references Ladavich, S., & Ghoraani, B. (2015). Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomedical Signal Processing and Control, 18, 274-281. doi:10.1016/j.bspc.2015.01.007 es_ES
dc.description.references ZHANG, Y., & MAZGALEV, T. N. (2004). Ventricular Rate Control During Atrial Fibrillation and AV Node Modifications: Pacing and Clinical Electrophysiology, 27(3), 382-393. doi:10.1111/j.1540-8159.2004.00447.x es_ES
dc.description.references Tateno, K., & Glass, L. (2001). Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Medical & Biological Engineering & Computing, 39(6), 664-671. doi:10.1007/bf02345439 es_ES
dc.description.references Dash, S., Chon, K. H., Lu, S., & Raeder, E. A. (2009). Automatic Real Time Detection of Atrial Fibrillation. Annals of Biomedical Engineering, 37(9), 1701-1709. doi:10.1007/s10439-009-9740-z es_ES
dc.description.references Chao Huang, Shuming Ye, Hang Chen, Dingli Li, Fangtian He, & Yuewen Tu. (2011). A Novel Method for Detection of the Transition Between Atrial Fibrillation and Sinus Rhythm. IEEE Transactions on Biomedical Engineering, 58(4), 1113-1119. doi:10.1109/tbme.2010.2096506 es_ES
dc.description.references Lake, D. E., & Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. American Journal of Physiology-Heart and Circulatory Physiology, 300(1), H319-H325. doi:10.1152/ajpheart.00561.2010 es_ES
dc.description.references Lee, J., Reyes, B. A., McManus, D. D., Maitas, O., & Chon, K. H. (2013). Atrial Fibrillation Detection Using an iPhone 4S. IEEE Transactions on Biomedical Engineering, 60(1), 203-206. doi:10.1109/tbme.2012.2208112 es_ES
dc.description.references Zhou, X., Ding, H., Ung, B., Pickwell-MacPherson, E., & Zhang, Y. (2014). Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. BioMedical Engineering OnLine, 13(1), 18. doi:10.1186/1475-925x-13-18 es_ES
dc.description.references Seet, R. C. S., Friedman, P. A., & Rabinstein, A. A. (2011). Prolonged Rhythm Monitoring for the Detection of Occult Paroxysmal Atrial Fibrillation in Ischemic Stroke of Unknown Cause. Circulation, 124(4), 477-486. doi:10.1161/circulationaha.111.029801 es_ES
dc.description.references Babaeizadeh, S., Gregg, R. E., Helfenbein, E. D., Lindauer, J. M., & Zhou, S. H. (2009). Improvements in atrial fibrillation detection for real-time monitoring. Journal of Electrocardiology, 42(6), 522-526. doi:10.1016/j.jelectrocard.2009.06.006 es_ES
dc.description.references Jiang, K., Huang, C., Ye, S., & Chen, H. (2012). High accuracy in automatic detection of atrial fibrillation for Holter monitoring. Journal of Zhejiang University SCIENCE B, 13(9), 751-756. doi:10.1631/jzus.b1200107 es_ES
dc.description.references Pürerfellner, H., Pokushalov, E., Sarkar, S., Koehler, J., Zhou, R., Urban, L., & Hindricks, G. (2014). P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors. Heart Rhythm, 11(9), 1575-1583. doi:10.1016/j.hrthm.2014.06.006 es_ES
dc.description.references Du, X., Rao, N., Qian, M., Liu, D., Li, J., Feng, W., … Chen, X. (2013). A Novel Method for Real-Time Atrial Fibrillation Detection in Electrocardiograms Using Multiple Parameters. Annals of Noninvasive Electrocardiology, 19(3), 217-225. doi:10.1111/anec.12111 es_ES
dc.description.references Petrėnas, A., Sörnmo, L., Lukoševičius, A., & Marozas, V. (2014). Detection of occult paroxysmal atrial fibrillation. Medical & Biological Engineering & Computing, 53(4), 287-297. doi:10.1007/s11517-014-1234-y es_ES
dc.description.references LEVY, S. (1998). Atrial fibrillation: current knowledge and recommendations for management*1. European Heart Journal, 19(9), 1294-1320. doi:10.1053/euhj.1998.1050 es_ES
dc.description.references HOLMQVIST, F., CARLSON, J., WAKTARE, J. E. P., & PLATONOV, P. G. (2009). Noninvasive Evidence of Shortened Atrial Refractoriness during Sinus Rhythm in Patients with Paroxysmal Atrial Fibrillation. Pacing and Clinical Electrophysiology, 32(3), 302-307. doi:10.1111/j.1540-8159.2008.02236.x es_ES
dc.description.references Blanche, C., Tran, N., Carballo, D., Rigamonti, F., Burri, H., & Zimmermann, M. (2014). Usefulness of P-Wave Signal Averaging to Predict Atrial Fibrillation Recurrences after Electrical Cardioversion. Annals of Noninvasive Electrocardiology, 19(3), 266-272. doi:10.1111/anec.12131 es_ES
dc.description.references Blanche, C., Tran, N., Rigamonti, F., Burri, H., & Zimmermann, M. (2012). Value of P-wave signal averaging to predict atrial fibrillation recurrences after pulmonary vein isolation. EP Europace, 15(2), 198-204. doi:10.1093/europace/eus251 es_ES
dc.description.references Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 es_ES
dc.description.references Taha, B., Reddy, S., Xue, Q., & Swiryn, S. (2000). Automated discrimination between atrial fibrillation and atrial flutter in the resting 12-lead electrocardiogram. Journal of Electrocardiology, 33, 123-125. doi:10.1054/jelc.2000.20303 es_ES
dc.description.references Christov, G. Bortolan, I. Daskalov, I. (2001). Automatic detection of atrial fibrillation and flutter by wave rectification method. Journal of Medical Engineering & Technology, 25(5), 217-221. doi:10.1080/03091900110065942 es_ES
dc.description.references Dotsinsky, I., & Stoyanov, T. (2004). Optimization of bi-directional digital filtering for drift suppression in electrocardiogram signals. Journal of Medical Engineering & Technology, 28(4), 178-180. doi:10.1080/03091900410001675996 es_ES
dc.description.references Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005 es_ES
dc.description.references Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26(5), R155-R199. doi:10.1088/0967-3334/26/5/r01 es_ES
dc.description.references Rafiee, J., Rafiee, M. A., Prause, N., & Schoen, M. P. (2011). Wavelet basis functions in biomedical signal processing. Expert Systems with Applications, 38(5), 6190-6201. doi:10.1016/j.eswa.2010.11.050 es_ES
dc.description.references Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054 es_ES
dc.description.references Liu, C., Li, P., Di Maria, C., Zhao, L., Zhang, H., & Chen, Z. (2014). A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings. Physiological Measurement, 35(8), 1665-1683. doi:10.1088/0967-3334/35/8/1665 es_ES
dc.description.references CENSI, F., RICCI, C., CALCAGNINI, G., TRIVENTI, M., RICCI, R. P., SANTINI, M., & BARTOLINI, P. (2008). Time-Domain and Morphological Analysis of the P-Wave. Part I: Technical Aspects for Automatic Quantification of P-Wave Features. Pacing and Clinical Electrophysiology, 31(7), 874-883. doi:10.1111/j.1540-8159.2008.01102.x es_ES
dc.description.references Jinseok Lee, Yunyoung Nam, McManus, D. D., & Chon, K. H. (2013). Time-Varying Coherence Function for Atrial Fibrillation Detection. IEEE Transactions on Biomedical Engineering, 60(10), 2783-2793. doi:10.1109/tbme.2013.2264721 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem