Mostrar el registro sencillo del ítem
dc.contributor.author | Ródenas, Juan | es_ES |
dc.contributor.author | García, Manuel | es_ES |
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.date.accessioned | 2016-05-24T11:25:20Z | |
dc.date.available | 2016-05-24T11:25:20Z | |
dc.date.issued | 2015-09 | |
dc.identifier.issn | 1099-4300 | |
dc.identifier.uri | http://hdl.handle.net/10251/64657 | |
dc.description.abstract | This work introduces for the first time the application of wavelet entropy (WE) to detect episodes of the most common cardiac arrhythmia, atrial fibrillation (AF), automatically from the electrocardiogram (ECG). Given that AF is often asymptomatic and usually presents very brief initial episodes, its early automatic detection is clinically relevant to improve AF treatment and prevent risks for the patients. After discarding noisy TQ intervals from the ECG, the WE has been computed over the median TQ segment obtained from the 10 previous noise-free beats under study. In this way, the P-waves or the fibrillatory waves present in the recording were highlighted or attenuated, respectively, thus enabling the patient's rhythm identification (sinus rhythm or AF). Results provided a discriminant ability of about 95%, which is comparable to previous works. However, in contrast to most of them, which are mainly based on quantifying RR series variability, the proposed algorithm is able to deal with patients under rate-control therapy or with a reduced heart rate variability during AF. Additionally, it also presents interesting properties, such as the lowest delay in detecting AF or sinus rhythm, the ability to detect episodes as brief as five beats in length or its integration facilities under real-time beat-by-beat ECG monitoring systems. Consequently, this tool may help clinicians in the automatic detection of a wide variety of AF episodes, thus gaining further knowledge about the mechanisms initiating this arrhythmia. | es_ES |
dc.description.sponsorship | This work was supported by the projects TEC2014-52250-R from the Spanish Ministry of Economy and Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla La Mancha. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Entropy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Electrocardiogram | es_ES |
dc.subject | Wavelet entropy | es_ES |
dc.subject | Wavelet transform | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/e17096179 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-52250-R/ES/CUANTIFICACION DEL REMODELADO ELECTROANATOMICO EN ARRITMIAS CARDIACAS. DE LA INVESTIGACION A LA TERAPIA PERSONALIZADA./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//PPII-2014-026-P/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Ródenas, J.; García, M.; Alcaraz, R.; Rieta, JJ. (2015). Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. Entropy. 17(9):6179-6199. https://doi.org/10.3390/e17096179 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/e17096179 | es_ES |
dc.description.upvformatpinicio | 6179 | es_ES |
dc.description.upvformatpfin | 6199 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 302091 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |
dc.description.references | Drachman, D. A. (2006). Aging of the brain, entropy, and Alzheimer disease. Neurology, 67(8), 1340-1352. doi:10.1212/01.wnl.0000240127.89601.83 | es_ES |
dc.description.references | Schulz, S., Bär, K.-J., & Voss, A. (2015). Analyses of Heart Rate, Respiration and Cardiorespiratory Coupling in Patients with Schizophrenia. Entropy, 17(2), 483-501. doi:10.3390/e17020483 | es_ES |
dc.description.references | Du, Q., Nie, K., & Wang, Z. (2014). Application of Entropy-Based Attribute Reduction and an Artificial Neural Network in Medicine: A Case Study of Estimating Medical Care Costs Associated with Myocardial Infarction. Entropy, 16(9), 4788-4800. doi:10.3390/e16094788 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001 | es_ES |
dc.description.references | Umar, H. (2002). Clinical decision-making using computers: opportunities and limitations. Dental Clinics of North America, 46(3), 521-538. doi:10.1016/s0011-8532(02)00008-3 | es_ES |
dc.description.references | Belle, A., Kon, M. A., & Najarian, K. (2013). Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey. The Scientific World Journal, 2013, 1-8. doi:10.1155/2013/769639 | es_ES |
dc.description.references | Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., & Başar, E. (2001). Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65-75. doi:10.1016/s0165-0270(00)00356-3 | es_ES |
dc.description.references | Frantzidis, C. A., Vivas, A. B., Tsolaki, A., Klados, M. A., Tsolaki, M., & Bamidis, P. D. (2014). Functional disorganization of small-world brain networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE). Frontiers in Aging Neuroscience, 6. doi:10.3389/fnagi.2014.00224 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2012). Application of Wavelet Entropy to Predict Atrial Fibrillation Progression from the Surface ECG. Computational and Mathematical Methods in Medicine, 2012, 1-9. doi:10.1155/2012/245213 | es_ES |
dc.description.references | Xu, P., Hu, X., & Yao, D. (2013). Improved wavelet entropy calculation with window functions and its preliminary application to study intracranial pressure. Computers in Biology and Medicine, 43(5), 425-433. doi:10.1016/j.compbiomed.2013.01.022 | es_ES |
dc.description.references | Emre Cek, M., Ozgoren, M., & Acar Savaci, F. (2010). Continuous time wavelet entropy of auditory evoked potentials. Computers in Biology and Medicine, 40(1), 90-96. doi:10.1016/j.compbiomed.2009.11.005 | es_ES |
dc.description.references | Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., … Wann, L. S. (2011). 2011 ACCF/AHA/HRS Focused Updates Incorporated Into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 123(10). doi:10.1161/cir.0b013e318214876d | es_ES |
dc.description.references | Gillis, A. M., Krahn, A. D., Skanes, A. C., & Nattel, S. (2013). Management of Atrial Fibrillation in the Year 2033: New Concepts, Tools, and Applications Leading to Personalized Medicine. Canadian Journal of Cardiology, 29(10), 1141-1146. doi:10.1016/j.cjca.2013.07.006 | es_ES |
dc.description.references | January, C. T., Wann, L. S., Alpert, J. S., Calkins, H., Cigarroa, J. E., Cleveland, J. C., … Yancy, C. W. (2014). 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. Circulation, 130(23). doi:10.1161/cir.0000000000000041 | es_ES |
dc.description.references | Hart, R. G., Pearce, L. A., & Aguilar, M. I. (2007). Meta-analysis: Antithrombotic Therapy to Prevent Stroke in Patients Who Have Nonvalvular Atrial Fibrillation. Annals of Internal Medicine, 146(12), 857. doi:10.7326/0003-4819-146-12-200706190-00007 | es_ES |
dc.description.references | Blomstrom Lundqvist, C., Lip, G. Y. H., & Kirchhof, P. (2011). What are the costs of atrial fibrillation? Europace, 13(suppl 2), ii9-ii12. doi:10.1093/europace/eur087 | es_ES |
dc.description.references | Asgari, S., Mehrnia, A., & Moussavi, M. (2015). Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Computers in Biology and Medicine, 60, 132-142. doi:10.1016/j.compbiomed.2015.03.005 | es_ES |
dc.description.references | Israel, C. W., Grönefeld, G., Ehrlich, J. R., Li, Y.-G., & Hohnloser, S. H. (2004). Long-term risk of recurrent atrial fibrillation as documented by an implantable monitoring device. Journal of the American College of Cardiology, 43(1), 47-52. doi:10.1016/j.jacc.2003.08.027 | es_ES |
dc.description.references | Xiong, Q., Proietti, M., Senoo, K., & Lip, G. Y. H. (2015). Asymptomatic versus symptomatic atrial fibrillation: A systematic review of age/gender differences and cardiovascular outcomes. International Journal of Cardiology, 191, 172-177. doi:10.1016/j.ijcard.2015.05.011 | es_ES |
dc.description.references | Strickberger, S. A., Ip, J., Saksena, S., Curry, K., Bahnson, T. D., & Ziegler, P. D. (2005). Relationship between atrial tachyarrhythmias and symptoms. Heart Rhythm, 2(2), 125-131. doi:10.1016/j.hrthm.2004.10.042 | es_ES |
dc.description.references | Quinn, F. R., & Gladstone, D. (2014). Screening for undiagnosed atrial fibrillation in the community. Current Opinion in Cardiology, 29(1), 28-35. doi:10.1097/hco.0000000000000018 | es_ES |
dc.description.references | Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn, S., & Sahakian, A. V. (2006). Atrial fibrillation and waveform characterization. IEEE Engineering in Medicine and Biology Magazine, 25(6), 24-30. doi:10.1109/emb-m.2006.250505 | es_ES |
dc.description.references | Slocum, J., Sahakian, A., & Swiryn, S. (1992). Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. Journal of Electrocardiology, 25(1), 1-8. doi:10.1016/0022-0736(92)90123-h | es_ES |
dc.description.references | Ladavich, S., & Ghoraani, B. (2015). Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomedical Signal Processing and Control, 18, 274-281. doi:10.1016/j.bspc.2015.01.007 | es_ES |
dc.description.references | ZHANG, Y., & MAZGALEV, T. N. (2004). Ventricular Rate Control During Atrial Fibrillation and AV Node Modifications: Pacing and Clinical Electrophysiology, 27(3), 382-393. doi:10.1111/j.1540-8159.2004.00447.x | es_ES |
dc.description.references | Tateno, K., & Glass, L. (2001). Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Medical & Biological Engineering & Computing, 39(6), 664-671. doi:10.1007/bf02345439 | es_ES |
dc.description.references | Dash, S., Chon, K. H., Lu, S., & Raeder, E. A. (2009). Automatic Real Time Detection of Atrial Fibrillation. Annals of Biomedical Engineering, 37(9), 1701-1709. doi:10.1007/s10439-009-9740-z | es_ES |
dc.description.references | Chao Huang, Shuming Ye, Hang Chen, Dingli Li, Fangtian He, & Yuewen Tu. (2011). A Novel Method for Detection of the Transition Between Atrial Fibrillation and Sinus Rhythm. IEEE Transactions on Biomedical Engineering, 58(4), 1113-1119. doi:10.1109/tbme.2010.2096506 | es_ES |
dc.description.references | Lake, D. E., & Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. American Journal of Physiology-Heart and Circulatory Physiology, 300(1), H319-H325. doi:10.1152/ajpheart.00561.2010 | es_ES |
dc.description.references | Lee, J., Reyes, B. A., McManus, D. D., Maitas, O., & Chon, K. H. (2013). Atrial Fibrillation Detection Using an iPhone 4S. IEEE Transactions on Biomedical Engineering, 60(1), 203-206. doi:10.1109/tbme.2012.2208112 | es_ES |
dc.description.references | Zhou, X., Ding, H., Ung, B., Pickwell-MacPherson, E., & Zhang, Y. (2014). Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. BioMedical Engineering OnLine, 13(1), 18. doi:10.1186/1475-925x-13-18 | es_ES |
dc.description.references | Seet, R. C. S., Friedman, P. A., & Rabinstein, A. A. (2011). Prolonged Rhythm Monitoring for the Detection of Occult Paroxysmal Atrial Fibrillation in Ischemic Stroke of Unknown Cause. Circulation, 124(4), 477-486. doi:10.1161/circulationaha.111.029801 | es_ES |
dc.description.references | Babaeizadeh, S., Gregg, R. E., Helfenbein, E. D., Lindauer, J. M., & Zhou, S. H. (2009). Improvements in atrial fibrillation detection for real-time monitoring. Journal of Electrocardiology, 42(6), 522-526. doi:10.1016/j.jelectrocard.2009.06.006 | es_ES |
dc.description.references | Jiang, K., Huang, C., Ye, S., & Chen, H. (2012). High accuracy in automatic detection of atrial fibrillation for Holter monitoring. Journal of Zhejiang University SCIENCE B, 13(9), 751-756. doi:10.1631/jzus.b1200107 | es_ES |
dc.description.references | Pürerfellner, H., Pokushalov, E., Sarkar, S., Koehler, J., Zhou, R., Urban, L., & Hindricks, G. (2014). P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors. Heart Rhythm, 11(9), 1575-1583. doi:10.1016/j.hrthm.2014.06.006 | es_ES |
dc.description.references | Du, X., Rao, N., Qian, M., Liu, D., Li, J., Feng, W., … Chen, X. (2013). A Novel Method for Real-Time Atrial Fibrillation Detection in Electrocardiograms Using Multiple Parameters. Annals of Noninvasive Electrocardiology, 19(3), 217-225. doi:10.1111/anec.12111 | es_ES |
dc.description.references | Petrėnas, A., Sörnmo, L., Lukoševičius, A., & Marozas, V. (2014). Detection of occult paroxysmal atrial fibrillation. Medical & Biological Engineering & Computing, 53(4), 287-297. doi:10.1007/s11517-014-1234-y | es_ES |
dc.description.references | LEVY, S. (1998). Atrial fibrillation: current knowledge and recommendations for management*1. European Heart Journal, 19(9), 1294-1320. doi:10.1053/euhj.1998.1050 | es_ES |
dc.description.references | HOLMQVIST, F., CARLSON, J., WAKTARE, J. E. P., & PLATONOV, P. G. (2009). Noninvasive Evidence of Shortened Atrial Refractoriness during Sinus Rhythm in Patients with Paroxysmal Atrial Fibrillation. Pacing and Clinical Electrophysiology, 32(3), 302-307. doi:10.1111/j.1540-8159.2008.02236.x | es_ES |
dc.description.references | Blanche, C., Tran, N., Carballo, D., Rigamonti, F., Burri, H., & Zimmermann, M. (2014). Usefulness of P-Wave Signal Averaging to Predict Atrial Fibrillation Recurrences after Electrical Cardioversion. Annals of Noninvasive Electrocardiology, 19(3), 266-272. doi:10.1111/anec.12131 | es_ES |
dc.description.references | Blanche, C., Tran, N., Rigamonti, F., Burri, H., & Zimmermann, M. (2012). Value of P-wave signal averaging to predict atrial fibrillation recurrences after pulmonary vein isolation. EP Europace, 15(2), 198-204. doi:10.1093/europace/eus251 | es_ES |
dc.description.references | Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 | es_ES |
dc.description.references | Taha, B., Reddy, S., Xue, Q., & Swiryn, S. (2000). Automated discrimination between atrial fibrillation and atrial flutter in the resting 12-lead electrocardiogram. Journal of Electrocardiology, 33, 123-125. doi:10.1054/jelc.2000.20303 | es_ES |
dc.description.references | Christov, G. Bortolan, I. Daskalov, I. (2001). Automatic detection of atrial fibrillation and flutter by wave rectification method. Journal of Medical Engineering & Technology, 25(5), 217-221. doi:10.1080/03091900110065942 | es_ES |
dc.description.references | Dotsinsky, I., & Stoyanov, T. (2004). Optimization of bi-directional digital filtering for drift suppression in electrocardiogram signals. Journal of Medical Engineering & Technology, 28(4), 178-180. doi:10.1080/03091900410001675996 | es_ES |
dc.description.references | Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005 | es_ES |
dc.description.references | Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26(5), R155-R199. doi:10.1088/0967-3334/26/5/r01 | es_ES |
dc.description.references | Rafiee, J., Rafiee, M. A., Prause, N., & Schoen, M. P. (2011). Wavelet basis functions in biomedical signal processing. Expert Systems with Applications, 38(5), 6190-6201. doi:10.1016/j.eswa.2010.11.050 | es_ES |
dc.description.references | Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054 | es_ES |
dc.description.references | Liu, C., Li, P., Di Maria, C., Zhao, L., Zhang, H., & Chen, Z. (2014). A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings. Physiological Measurement, 35(8), 1665-1683. doi:10.1088/0967-3334/35/8/1665 | es_ES |
dc.description.references | CENSI, F., RICCI, C., CALCAGNINI, G., TRIVENTI, M., RICCI, R. P., SANTINI, M., & BARTOLINI, P. (2008). Time-Domain and Morphological Analysis of the P-Wave. Part I: Technical Aspects for Automatic Quantification of P-Wave Features. Pacing and Clinical Electrophysiology, 31(7), 874-883. doi:10.1111/j.1540-8159.2008.01102.x | es_ES |
dc.description.references | Jinseok Lee, Yunyoung Nam, McManus, D. D., & Chon, K. H. (2013). Time-Varying Coherence Function for Atrial Fibrillation Detection. IEEE Transactions on Biomedical Engineering, 60(10), 2783-2793. doi:10.1109/tbme.2013.2264721 | es_ES |