Mostrar el registro sencillo del ítem
dc.contributor.author | Domingo Beltran, Manuel | es_ES |
dc.contributor.author | Luna Molina, Ramón | es_ES |
dc.contributor.author | Satorre, M. Á. | es_ES |
dc.contributor.author | Santonja Moltó, Mª del Carmen | es_ES |
dc.contributor.author | Millán Verdú, Carlos | es_ES |
dc.date.accessioned | 2016-05-25T11:36:19Z | |
dc.date.available | 2016-05-25T11:36:19Z | |
dc.date.issued | 2015-10 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10251/64695 | |
dc.description.abstract | The use of thin films is extensive in both science and industry. We have created an experimental system that allows us to measure the thicknesses of thin films (with typical thicknesses of around 1 μm) in real time without the need for any prior knowledge or parameters. Using the proposed system, we can also measure the refractive index of the thin film material exactly under the same experimental conditions. We have also obtained interesting results with regard to structural changes in the solid substance with changing temperature and have observed the corresponding behavior of mixtures of substances. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Education and Science (co-financed by AYA 2009-12 974 funds). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Thin films | es_ES |
dc.subject | Thickness | es_ES |
dc.subject | Refractive index | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Double Laser for Depth Measurement of Thin Films of Ice | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s151025123 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AYA2009-12974/ES/Estudio De Analogos De Hielos Para Astrofisica En El Laboratorio: Espectroscopia Fir Y Parametros Fisicos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Domingo Beltran, M.; Luna Molina, R.; Satorre, MÁ.; Santonja Moltó, MDC.; Millán Verdú, C. (2015). Double Laser for Depth Measurement of Thin Films of Ice. Sensors. 15(10):25123-25138. doi:10.3390/s151025123 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/s151025123 | es_ES |
dc.description.upvformatpinicio | 25123 | es_ES |
dc.description.upvformatpfin | 25138 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 293920 | es_ES |
dc.identifier.pmid | 26426024 | en_EN |
dc.identifier.pmcid | PMC4634385 | en_EN |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Sarto, F., Alvisi, M., Melissano, E., Rizzo, A., Scaglione, S., & Vasanelli, L. (1999). Adhesion enhancement of optical coatings on plastic substrate via ion treatment. Thin Solid Films, 346(1-2), 196-201. doi:10.1016/s0040-6090(98)01753-2 | es_ES |
dc.description.references | Chatham, H. (1996). Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surface and Coatings Technology, 78(1-3), 1-9. doi:10.1016/0257-8972(95)02420-4 | es_ES |
dc.description.references | Baik, D. G., & Cho, S. M. (1999). Application of sol-gel derived films for ZnO/n-Si junction solar cells. Thin Solid Films, 354(1-2), 227-231. doi:10.1016/s0040-6090(99)00559-3 | es_ES |
dc.description.references | Satorre, M. Á., Domingo, M., Millán, C., Luna, R., Vilaplana, R., & Santonja, C. (2008). Density of , and ices at different temperatures of deposition. Planetary and Space Science, 56(13), 1748-1752. doi:10.1016/j.pss.2008.07.015 | es_ES |
dc.description.references | Kleiman, J. (1995). Protective coatings for LEO environments in spacecraft applications. Surface and Coatings Technology, 76-77, 827-834. doi:10.1016/02578-9729(50)24972- | es_ES |
dc.description.references | Ouyang, M., Klemchuk, P. P., & Koberstein, J. T. (2000). Exploring the effectiveness of SiOx coatings in protecting polymers against photo-oxidation. Polymer Degradation and Stability, 70(2), 217-228. doi:10.1016/s0141-3910(00)00116-6 | es_ES |
dc.description.references | Tolstova, Y., Wilson, S. S., & Atwater, H. A. (2015). Single phase, single orientation Cu2O (1 0 0) and (1 1 0) thin films grown by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 410, 77-81. doi:10.1016/j.jcrysgro.2014.10.045 | es_ES |
dc.description.references | Deram, V., Turrell, S., Darque-Ceretti, E., & Aucouturier, M. (2006). Study of «liquid gold» coatings: Thermal decomposition and formation of metallic thin films. Thin Solid Films, 515(1), 254-259. doi:10.1016/j.tsf.2005.12.078 | es_ES |
dc.description.references | Zhang, Y., Liao, C., Zong, K., Wang, H., Liu, J., Jiang, T., … Lau, W. (2013). Cu2ZnSnSe4 thin film solar cells prepared by rapid thermal annealing of co-electroplated Cu–Zn–Sn precursors. Solar Energy, 94, 1-7. doi:10.1016/j.solener.2013.05.002 | es_ES |
dc.description.references | Tempelmeyer, K. E., & Mills, D. W. (1968). Refractive Index of Carbon Dioxide Cryodeposit. Journal of Applied Physics, 39(6), 2968-2969. doi:10.1063/1.1656707 | es_ES |
dc.description.references | Satorre, M. Á., Leliwa-Kopystynski, J., Santonja, C., & Luna, R. (2013). Refractive index and density of ammonia ice at different temperatures of deposition. Icarus, 225(1), 703-708. doi:10.1016/j.icarus.2013.04.023 | es_ES |
dc.description.references | Schulze, W., & Abe, H. (1980). Density, refractive index and sorption capacity of solid CO2 layers. Chemical Physics, 52(3), 381-388. doi:10.1016/0301-0104(80)85240-2 | es_ES |
dc.description.references | Sandford, S. A., & Allamandola, L. J. (1990). The physical and infrared spectral properties of CO2 in astrophysical ice analogs. The Astrophysical Journal, 355, 357. doi:10.1086/168770 | es_ES |
dc.description.references | Romanescu, C., Marschall, J., Kim, D., Khatiwada, A., & Kalogerakis, K. S. (2010). Refractive index measurements of ammonia and hydrocarbon ices at 632.8nm. Icarus, 205(2), 695-701. doi:10.1016/j.icarus.2009.08.016 | es_ES |
dc.description.references | Luna, R., Satorre, M. Á., Domingo, M., Millán, C., & Santonja, C. (2012). Density and refractive index of binary CH4, N2 and CO2 ice mixtures. Icarus, 221(1), 186-191. doi:10.1016/j.icarus.2012.07.016 | es_ES |
dc.description.references | Luna, R., Satorre, M. Á., Santonja, C., & Domingo, M. (2014). New experimental sublimation energy measurements for some relevant astrophysical ices. Astronomy & Astrophysics, 566, A27. doi:10.1051/0004-6361/201323249 | es_ES |
dc.description.references | Domingo, M., Luna, R., Satorre, M. A., Santonja, C., & Millán, C. (2015). Experimental Measurement of Carbon Dioxide Polarizability in the Solid State. Journal of Low Temperature Physics, 181(1-2), 1-9. doi:10.1007/s10909-015-1326-6 | es_ES |