- -

Double Laser for Depth Measurement of Thin Films of Ice

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Double Laser for Depth Measurement of Thin Films of Ice

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Domingo Beltran, Manuel es_ES
dc.contributor.author Luna Molina, Ramón es_ES
dc.contributor.author Satorre, M. Á. es_ES
dc.contributor.author Santonja Moltó, Mª del Carmen es_ES
dc.contributor.author Millán Verdú, Carlos es_ES
dc.date.accessioned 2016-05-25T11:36:19Z
dc.date.available 2016-05-25T11:36:19Z
dc.date.issued 2015-10
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/64695
dc.description.abstract The use of thin films is extensive in both science and industry. We have created an experimental system that allows us to measure the thicknesses of thin films (with typical thicknesses of around 1 μm) in real time without the need for any prior knowledge or parameters. Using the proposed system, we can also measure the refractive index of the thin film material exactly under the same experimental conditions. We have also obtained interesting results with regard to structural changes in the solid substance with changing temperature and have observed the corresponding behavior of mixtures of substances. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Education and Science (co-financed by AYA 2009-12 974 funds). en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Thin films es_ES
dc.subject Thickness es_ES
dc.subject Refractive index es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Double Laser for Depth Measurement of Thin Films of Ice es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s151025123
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AYA2009-12974/ES/Estudio De Analogos De Hielos Para Astrofisica En El Laboratorio: Espectroscopia Fir Y Parametros Fisicos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Domingo Beltran, M.; Luna Molina, R.; Satorre, MÁ.; Santonja Moltó, MDC.; Millán Verdú, C. (2015). Double Laser for Depth Measurement of Thin Films of Ice. Sensors. 15(10):25123-25138. doi:10.3390/s151025123 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s151025123 es_ES
dc.description.upvformatpinicio 25123 es_ES
dc.description.upvformatpfin 25138 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 293920 es_ES
dc.identifier.pmid 26426024 en_EN
dc.identifier.pmcid PMC4634385 en_EN
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Sarto, F., Alvisi, M., Melissano, E., Rizzo, A., Scaglione, S., & Vasanelli, L. (1999). Adhesion enhancement of optical coatings on plastic substrate via ion treatment. Thin Solid Films, 346(1-2), 196-201. doi:10.1016/s0040-6090(98)01753-2 es_ES
dc.description.references Chatham, H. (1996). Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surface and Coatings Technology, 78(1-3), 1-9. doi:10.1016/0257-8972(95)02420-4 es_ES
dc.description.references Baik, D. G., & Cho, S. M. (1999). Application of sol-gel derived films for ZnO/n-Si junction solar cells. Thin Solid Films, 354(1-2), 227-231. doi:10.1016/s0040-6090(99)00559-3 es_ES
dc.description.references Satorre, M. Á., Domingo, M., Millán, C., Luna, R., Vilaplana, R., & Santonja, C. (2008). Density of , and ices at different temperatures of deposition. Planetary and Space Science, 56(13), 1748-1752. doi:10.1016/j.pss.2008.07.015 es_ES
dc.description.references Kleiman, J. (1995). Protective coatings for LEO environments in spacecraft applications. Surface and Coatings Technology, 76-77, 827-834. doi:10.1016/02578-9729(50)24972- es_ES
dc.description.references Ouyang, M., Klemchuk, P. P., & Koberstein, J. T. (2000). Exploring the effectiveness of SiOx coatings in protecting polymers against photo-oxidation. Polymer Degradation and Stability, 70(2), 217-228. doi:10.1016/s0141-3910(00)00116-6 es_ES
dc.description.references Tolstova, Y., Wilson, S. S., & Atwater, H. A. (2015). Single phase, single orientation Cu2O (1 0 0) and (1 1 0) thin films grown by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 410, 77-81. doi:10.1016/j.jcrysgro.2014.10.045 es_ES
dc.description.references Deram, V., Turrell, S., Darque-Ceretti, E., & Aucouturier, M. (2006). Study of «liquid gold» coatings: Thermal decomposition and formation of metallic thin films. Thin Solid Films, 515(1), 254-259. doi:10.1016/j.tsf.2005.12.078 es_ES
dc.description.references Zhang, Y., Liao, C., Zong, K., Wang, H., Liu, J., Jiang, T., … Lau, W. (2013). Cu2ZnSnSe4 thin film solar cells prepared by rapid thermal annealing of co-electroplated Cu–Zn–Sn precursors. Solar Energy, 94, 1-7. doi:10.1016/j.solener.2013.05.002 es_ES
dc.description.references Tempelmeyer, K. E., & Mills, D. W. (1968). Refractive Index of Carbon Dioxide Cryodeposit. Journal of Applied Physics, 39(6), 2968-2969. doi:10.1063/1.1656707 es_ES
dc.description.references Satorre, M. Á., Leliwa-Kopystynski, J., Santonja, C., & Luna, R. (2013). Refractive index and density of ammonia ice at different temperatures of deposition. Icarus, 225(1), 703-708. doi:10.1016/j.icarus.2013.04.023 es_ES
dc.description.references Schulze, W., & Abe, H. (1980). Density, refractive index and sorption capacity of solid CO2 layers. Chemical Physics, 52(3), 381-388. doi:10.1016/0301-0104(80)85240-2 es_ES
dc.description.references Sandford, S. A., & Allamandola, L. J. (1990). The physical and infrared spectral properties of CO2 in astrophysical ice analogs. The Astrophysical Journal, 355, 357. doi:10.1086/168770 es_ES
dc.description.references Romanescu, C., Marschall, J., Kim, D., Khatiwada, A., & Kalogerakis, K. S. (2010). Refractive index measurements of ammonia and hydrocarbon ices at 632.8nm. Icarus, 205(2), 695-701. doi:10.1016/j.icarus.2009.08.016 es_ES
dc.description.references Luna, R., Satorre, M. Á., Domingo, M., Millán, C., & Santonja, C. (2012). Density and refractive index of binary CH4, N2 and CO2 ice mixtures. Icarus, 221(1), 186-191. doi:10.1016/j.icarus.2012.07.016 es_ES
dc.description.references Luna, R., Satorre, M. Á., Santonja, C., & Domingo, M. (2014). New experimental sublimation energy measurements for some relevant astrophysical ices. Astronomy & Astrophysics, 566, A27. doi:10.1051/0004-6361/201323249 es_ES
dc.description.references Domingo, M., Luna, R., Satorre, M. A., Santonja, C., & Millán, C. (2015). Experimental Measurement of Carbon Dioxide Polarizability in the Solid State. Journal of Low Temperature Physics, 181(1-2), 1-9. doi:10.1007/s10909-015-1326-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem