- -

Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain

Mostrar el registro completo del ítem

Arouri, R.; Le Goff, G.; Hemden, H.; Navarro-Llopis, V.; M'saad, M.; Castanera, P.; Feyereisen, R.... (2015). Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain. Pest Management Science. 71(9):1281-1291. https://doi.org/10.1002/ps.3924

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64703

Ficheros en el ítem

Metadatos del ítem

Título: Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain
Autor: Arouri, Rabeh Le Goff, Gaelle Hemden, Hiethem Navarro-Llopis, Vicente M'saad, Mariem Castanera, Pedro Feyereisen, Rene Hernandez-Crespo, Pedro Ortego, Felix
Entidad UPV: Universitat Politècnica de València. Centro de Ecología Química Agrícola - Centre d'Ecologia Química Agrícola
Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani
Fecha difusión:
Resumen:
BACKGROUND The withdrawal of malathion in the European Union in 2009 resulted in a large increase in lambda-cyhalothrin applications for the control of the Mediterranean fruit fly, Ceratitis capitata, in Spanish citrus ...[+]
Palabras clave: Fruit fly , Pyrethroid , Insecticide resistance , P450 overexpression
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Pest Management Science. (issn: 1526-498X )
DOI: 10.1002/ps.3924
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/ps.3924
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2010-21349-C02-01/ES/NUEVAS HERRAMIENTAS PARA EL CONTROL DE LA MOSCA MEDITERRANEA DE LA FRUTA/
info:eu-repo/grantAgreement/MAEC//A%2F026050%2F09/ES/DETECCIÓN DE RESISTENCIA A INSECTICIDAS EN LA MOSCA MEDITERRÁNEA DE LA FRUTA - DÉTECTION DE LA RÉSISTANCE AUX INSECTICIDES DE LA MOUCHE MÉDITÉRRANÉENE DES FRUITS/
info:eu-repo/grantAgreement/MAEC//A%2F030253%2F10/ES/DETECCIÓN DE RESISTENCIA A INSECTICIDAS EN LA MOSCA MEDITERRÁNEA DE LA FRUTA - DÉTECTION DE LA RÉSISTANCE AUX INSECTICIDES DE LA MOUCHE MÉDITÉRRANÉENE DES FRUITS/
Agradecimientos:
We gratefully acknowledge the Medfly Whole Genome Sequencing Project for providing the NCBI sequence data used in this report, led by Drs Alfred Handler (USDA, Agricultural Research Service), Giuliano Gasperi (University ...[+]
Tipo: Artículo

References

Vontas, J., Hernández-Crespo, P., Margaritopoulos, J. T., Ortego, F., Feng, H.-T., Mathiopoulos, K. D., & Hsu, J.-C. (2011). Insecticide resistance in Tephritid flies. Pesticide Biochemistry and Physiology, 100(3), 199-205. doi:10.1016/j.pestbp.2011.04.004

Magaña, C., Hernández-Crespo, P., Ortego, F., & Castañera, P. (2007). Resistance to Malathion in Field Populations of Ceratitis capitata. Journal of Economic Entomology, 100(6), 1836-1843. doi:10.1093/jee/100.6.1836

Couso-Ferrer, F., Arouri, R., Beroiz, B., Perera, N., Cervera, A., Navarro-Llopis, V., … Ortego, F. (2011). Cross-Resistance to Insecticides in a Malathion-Resistant Strain of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 104(4), 1349-1356. doi:10.1603/ec11082 [+]
Vontas, J., Hernández-Crespo, P., Margaritopoulos, J. T., Ortego, F., Feng, H.-T., Mathiopoulos, K. D., & Hsu, J.-C. (2011). Insecticide resistance in Tephritid flies. Pesticide Biochemistry and Physiology, 100(3), 199-205. doi:10.1016/j.pestbp.2011.04.004

Magaña, C., Hernández-Crespo, P., Ortego, F., & Castañera, P. (2007). Resistance to Malathion in Field Populations of Ceratitis capitata. Journal of Economic Entomology, 100(6), 1836-1843. doi:10.1093/jee/100.6.1836

Couso-Ferrer, F., Arouri, R., Beroiz, B., Perera, N., Cervera, A., Navarro-Llopis, V., … Ortego, F. (2011). Cross-Resistance to Insecticides in a Malathion-Resistant Strain of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 104(4), 1349-1356. doi:10.1603/ec11082

Magaña, C., Hernández-Crespo, P., Brun-Barale, A., Couso-Ferrer, F., Bride, J.-M., Castañera, P., … Ortego, F. (2008). Mechanisms of resistance to malathion in the medfly Ceratitis capitata. Insect Biochemistry and Molecular Biology, 38(8), 756-762. doi:10.1016/j.ibmb.2008.05.001

Chen, W.-L., & Sun, C.-N. (1994). Purification and characterization of carboxylesterases of a rice brown planthopper, Nilaparvata lugens Stål. Insect Biochemistry and Molecular Biology, 24(4), 347-355. doi:10.1016/0965-1748(94)90027-2

Bisset, J., Rodriguez, M., Soca, A., Pasteur, N., & Raymond, M. (1997). Cross-Resistance to Pyrethroid and Organophosphorus Insecticides in the Southern House Mosquito (Diptera: Culicidae) from Cuba. Journal of Medical Entomology, 34(2), 244-246. doi:10.1093/jmedent/34.2.244

Heidari, R., Devonshire, A. L., Campbell, B. E., Dorrian, S. J., Oakeshott, J. G., & Russell, R. J. (2005). Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochemistry and Molecular Biology, 35(6), 597-609. doi:10.1016/j.ibmb.2005.02.018

Soderlund, D. M., & Knipple, D. C. (2003). The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 33(6), 563-577. doi:10.1016/s0965-1748(03)00023-7

Davies, T. E., O’Reilly, A. O., Field, L. M., Wallace, B., & Williamson, M. S. (2008). Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling. Pest Management Science, 64(11), 1126-1130. doi:10.1002/ps.1617

Feyereisen, R. (2012). Insect CYP Genes and P450 Enzymes. Insect Molecular Biology and Biochemistry, 236-316. doi:10.1016/b978-0-12-384747-8.10008-x

Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annual Review of Entomology, 52(1), 231-253. doi:10.1146/annurev.ento.51.110104.151104

Lin, Y., Jin, T., Zeng, L., & Lu, Y. (2012). Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pesticide Biochemistry and Physiology, 103(3), 189-193. doi:10.1016/j.pestbp.2012.05.002

POLO-PC, User's Guide to Probit or Logit Analysis LeOra Software Berkeley, CA 1987

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e-45. doi:10.1093/nar/29.9.e45

Hsu, J.-C., Feng, H.-T., & Wu, W.-J. (2004). Resistance and Synergistic Effects of Insecticides in <I>Bactrocera dorsalis</I> (Diptera: Tephritidae) in Taiwan. Journal of Economic Entomology, 97(5), 1682-1688. doi:10.1603/0022-0493-97.5.1682

Sheppard, C. D., & Joyce, J. A. (1992). High Levels of Pyrethroid Resistance in Horn Flies (Diptera: Muscidae) Selected with Cyhalothrin. Journal of Economic Entomology, 85(5), 1587-1593. doi:10.1093/jee/85.5.1587

Liu, N., & Yue, X. (2000). Insecticide Resistance and Cross-Resistance in the House Fly (Diptera: Muscidae). Journal of Economic Entomology, 93(4), 1269-1275. doi:10.1603/0022-0493-93.4.1269

Hemingway, J., Hawkes, N. J., McCarroll, L., & Ranson, H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7), 653-665. doi:10.1016/j.ibmb.2004.03.018

Soderlund, D. M. (2008). Pyrethroids, knockdown resistance and sodium channels. Pest Management Science, 64(6), 610-616. doi:10.1002/ps.1574

Liu, N., Li, T., Reid, W. R., Yang, T., & Zhang, L. (2011). Multiple Cytochrome P450 Genes: Their Constitutive Overexpression and Permethrin Induction in Insecticide Resistant Mosquitoes, Culex quinquefasciatus. PLoS ONE, 6(8), e23403. doi:10.1371/journal.pone.0023403

Riveron, J. M., Irving, H., Ndula, M., Barnes, K. G., Ibrahim, S. S., Paine, M. J. I., & Wondji, C. S. (2012). Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proceedings of the National Academy of Sciences, 110(1), 252-257. doi:10.1073/pnas.1216705110

Dai, S. M., & Sun, C. N. (1984). Pyrethroid Resistance and Synergism in Nilaparvata lugens Stål (Homoptera: Delphacidae) in Taiwan. Journal of Economic Entomology, 77(4), 891-897. doi:10.1093/jee/77.4.891

Gunning, R. V., Moores, G. D., & Devonshire, A. L. (1997). Esterases and Fenvalerate Resistance in a Field Population ofHelicoverpa punctigera(Lepidoptera: Noctuidae) in Australia. Pesticide Biochemistry and Physiology, 58(2), 155-162. doi:10.1006/pest.1997.2295

VONTAS, J. G., SMALL, G. J., & HEMINGWAY, J. (2001). Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemical Journal, 357(1), 65. doi:10.1042/0264-6021:3570065

Fragoso, D. B., Guedes, R. N. C., & Rezende, S. T. (2003). Glutathione S-transferase detoxification as a potential pyrethroid resistance mechanism in the maize weevil, Sitophilus zeamais. Entomologia Experimentalis et Applicata, 109(1), 21-29. doi:10.1046/j.1570-7458.2003.00085.x

DeVries, D. H., & Georghiou, G. P. (1981). Decreased nerve sensitivity and decreased cuticular penetration as mechanisms of resistance to pyrethroids in a (1R)-trans-permethrin-selected strain of the house fly. Pesticide Biochemistry and Physiology, 15(3), 234-241. doi:10.1016/0048-3575(81)90005-5

Valles, S. M., Dong, K., & Brenner, R. J. (2000). Mechanisms Responsible for Cypermethrin Resistance in a Strain of German Cockroach, Blattella germanica. Pesticide Biochemistry and Physiology, 66(3), 195-205. doi:10.1006/pest.1999.2462

Yang, Y., Chen, S., Wu, S., Yue, L., & Wu, Y. (2006). Constitutive Overexpression of Multiple Cytochrome P450 Genes Associated with Pyrethroid Resistance in Helicoverpa armigera. Journal of Economic Entomology, 99(5), 1784-1789. doi:10.1093/jee/99.5.1784

Komagata, O., Kasai, S., & Tomita, T. (2010). Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochemistry and Molecular Biology, 40(2), 146-152. doi:10.1016/j.ibmb.2010.01.006

David, J.-P., Strode, C., Vontas, J., Nikou, D., Vaughan, A., Pignatelli, P. M., … Ranson, H. (2005). The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proceedings of the National Academy of Sciences, 102(11), 4080-4084. doi:10.1073/pnas.0409348102

Joussen, N., Agnolet, S., Lorenz, S., Schone, S. E., Ellinger, R., Schneider, B., & Heckel, D. G. (2012). Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences, 109(38), 15206-15211. doi:10.1073/pnas.1202047109

Brandt, A., Scharf, M., Pedra, J. H. F., Holmes, G., Dean, A., Kreitman, M., & Pittendrigh, B. R. (2002). Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Molecular Biology, 11(4), 337-341. doi:10.1046/j.1365-2583.2002.00344.x

Bogwitz, M. R., Chung, H., Magoc, L., Rigby, S., Wong, W., O’Keefe, M., … Daborn, P. J. (2005). Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proceedings of the National Academy of Sciences, 102(36), 12807-12812. doi:10.1073/pnas.0503709102

Bautista, M. A. M., Tanaka, T., & Miyata, T. (2007). Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance. Pesticide Biochemistry and Physiology, 87(1), 85-93. doi:10.1016/j.pestbp.2006.06.004

Huang, Y., Shen, G.-M., Jiang, H.-B., Jiang, X.-Z., Dou, W., & Wang, J.-J. (2013). Multiple P450 genes: Identification, tissue-specific expression and their responses to insecticide treatments in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidea). Pesticide Biochemistry and Physiology, 106(1-2), 1-7. doi:10.1016/j.pestbp.2013.03.001

ffrench-Constant, R. H., Daborn, P. J., & Goff, G. L. (2004). The genetics and genomics of insecticide resistance. Trends in Genetics, 20(3), 163-170. doi:10.1016/j.tig.2004.01.003

Scott, J. G., & Kasai, S. (2004). Evolutionary plasticity of monooxygenase-mediated resistance. Pesticide Biochemistry and Physiology, 78(3), 171-178. doi:10.1016/j.pestbp.2004.01.002

Kamiya, E., Yamakawa, M., Shono, T., & Kono, Y. (2001). Molecular cloning, nucleotide sequences and gene expression of new cytochrome P450s (CYP6A24, CYP6D3v2) from the pyrethroid resistant housefly, Musca domestica L. (Diptera: Muscidae). Applied Entomology and Zoology, 36(2), 225-229. doi:10.1303/aez.2001.225

Zhu, F., & Liu, N. (2008). Differential expression ofCYP6A5 andCYP6A5v2 in pyrethroid-resistant house flies,Musca domestica. Archives of Insect Biochemistry and Physiology, 67(3), 107-119. doi:10.1002/arch.20225

Zhu, F., Li, T., Zhang, L., & Liu, N. (2008). Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiology, 8(1), 18. doi:10.1186/1472-6793-8-18

Zhu, F., Feng, J.-N., Zhang, L., & Liu, N. (2008). Characterization of two novel cytochrome P450 genes in insecticide-resistant house-flies. Insect Molecular Biology, 17(1), 27-37. doi:10.1111/j.1365-2583.2008.00777.x

Scott, J. G., Liu, N., Wen, Z., Smith, F. F., Kasai, S., & Horak, C. E. (1999). House-fly cytochrome P450 CYP6D1: 5′ flanking sequences and comparison of alleles. Gene, 226(2), 347-353. doi:10.1016/s0378-1119(98)00545-9

Daborn, P. J. (2002). A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science, 297(5590), 2253-2256. doi:10.1126/science.1074170

Chung, H., Bogwitz, M. R., McCart, C., Andrianopoulos, A., ffrench-Constant, R. H., Batterham, P., & Daborn, P. J. (2006). Cis-Regulatory Elements in theAccordRetrotransposon Result in Tissue-Specific Expression of theDrosophila melanogasterInsecticide Resistance GeneCyp6g1. Genetics, 175(3), 1071-1077. doi:10.1534/genetics.106.066597

Schlenke, T. A., & Begun, D. J. (2004). Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proceedings of the National Academy of Sciences, 101(6), 1626-1631. doi:10.1073/pnas.0303793101

Bhaskara, S., Dean, E. D., Lam, V., & Ganguly, R. (2006). Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene, 377, 56-64. doi:10.1016/j.gene.2006.02.032

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem