Vontas, J., Hernández-Crespo, P., Margaritopoulos, J. T., Ortego, F., Feng, H.-T., Mathiopoulos, K. D., & Hsu, J.-C. (2011). Insecticide resistance in Tephritid flies. Pesticide Biochemistry and Physiology, 100(3), 199-205. doi:10.1016/j.pestbp.2011.04.004
Magaña, C., Hernández-Crespo, P., Ortego, F., & Castañera, P. (2007). Resistance to Malathion in Field Populations of Ceratitis capitata. Journal of Economic Entomology, 100(6), 1836-1843. doi:10.1093/jee/100.6.1836
Couso-Ferrer, F., Arouri, R., Beroiz, B., Perera, N., Cervera, A., Navarro-Llopis, V., … Ortego, F. (2011). Cross-Resistance to Insecticides in a Malathion-Resistant Strain of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 104(4), 1349-1356. doi:10.1603/ec11082
[+]
Vontas, J., Hernández-Crespo, P., Margaritopoulos, J. T., Ortego, F., Feng, H.-T., Mathiopoulos, K. D., & Hsu, J.-C. (2011). Insecticide resistance in Tephritid flies. Pesticide Biochemistry and Physiology, 100(3), 199-205. doi:10.1016/j.pestbp.2011.04.004
Magaña, C., Hernández-Crespo, P., Ortego, F., & Castañera, P. (2007). Resistance to Malathion in Field Populations of Ceratitis capitata. Journal of Economic Entomology, 100(6), 1836-1843. doi:10.1093/jee/100.6.1836
Couso-Ferrer, F., Arouri, R., Beroiz, B., Perera, N., Cervera, A., Navarro-Llopis, V., … Ortego, F. (2011). Cross-Resistance to Insecticides in a Malathion-Resistant Strain of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 104(4), 1349-1356. doi:10.1603/ec11082
Magaña, C., Hernández-Crespo, P., Brun-Barale, A., Couso-Ferrer, F., Bride, J.-M., Castañera, P., … Ortego, F. (2008). Mechanisms of resistance to malathion in the medfly Ceratitis capitata. Insect Biochemistry and Molecular Biology, 38(8), 756-762. doi:10.1016/j.ibmb.2008.05.001
Chen, W.-L., & Sun, C.-N. (1994). Purification and characterization of carboxylesterases of a rice brown planthopper, Nilaparvata lugens Stål. Insect Biochemistry and Molecular Biology, 24(4), 347-355. doi:10.1016/0965-1748(94)90027-2
Bisset, J., Rodriguez, M., Soca, A., Pasteur, N., & Raymond, M. (1997). Cross-Resistance to Pyrethroid and Organophosphorus Insecticides in the Southern House Mosquito (Diptera: Culicidae) from Cuba. Journal of Medical Entomology, 34(2), 244-246. doi:10.1093/jmedent/34.2.244
Heidari, R., Devonshire, A. L., Campbell, B. E., Dorrian, S. J., Oakeshott, J. G., & Russell, R. J. (2005). Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochemistry and Molecular Biology, 35(6), 597-609. doi:10.1016/j.ibmb.2005.02.018
Soderlund, D. M., & Knipple, D. C. (2003). The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 33(6), 563-577. doi:10.1016/s0965-1748(03)00023-7
Davies, T. E., O’Reilly, A. O., Field, L. M., Wallace, B., & Williamson, M. S. (2008). Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling. Pest Management Science, 64(11), 1126-1130. doi:10.1002/ps.1617
Feyereisen, R. (2012). Insect CYP Genes and P450 Enzymes. Insect Molecular Biology and Biochemistry, 236-316. doi:10.1016/b978-0-12-384747-8.10008-x
Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annual Review of Entomology, 52(1), 231-253. doi:10.1146/annurev.ento.51.110104.151104
Lin, Y., Jin, T., Zeng, L., & Lu, Y. (2012). Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pesticide Biochemistry and Physiology, 103(3), 189-193. doi:10.1016/j.pestbp.2012.05.002
POLO-PC, User's Guide to Probit or Logit Analysis LeOra Software Berkeley, CA 1987
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e-45. doi:10.1093/nar/29.9.e45
Hsu, J.-C., Feng, H.-T., & Wu, W.-J. (2004). Resistance and Synergistic Effects of Insecticides in <I>Bactrocera dorsalis</I> (Diptera: Tephritidae) in Taiwan. Journal of Economic Entomology, 97(5), 1682-1688. doi:10.1603/0022-0493-97.5.1682
Sheppard, C. D., & Joyce, J. A. (1992). High Levels of Pyrethroid Resistance in Horn Flies (Diptera: Muscidae) Selected with Cyhalothrin. Journal of Economic Entomology, 85(5), 1587-1593. doi:10.1093/jee/85.5.1587
Liu, N., & Yue, X. (2000). Insecticide Resistance and Cross-Resistance in the House Fly (Diptera: Muscidae). Journal of Economic Entomology, 93(4), 1269-1275. doi:10.1603/0022-0493-93.4.1269
Hemingway, J., Hawkes, N. J., McCarroll, L., & Ranson, H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7), 653-665. doi:10.1016/j.ibmb.2004.03.018
Soderlund, D. M. (2008). Pyrethroids, knockdown resistance and sodium channels. Pest Management Science, 64(6), 610-616. doi:10.1002/ps.1574
Liu, N., Li, T., Reid, W. R., Yang, T., & Zhang, L. (2011). Multiple Cytochrome P450 Genes: Their Constitutive Overexpression and Permethrin Induction in Insecticide Resistant Mosquitoes, Culex quinquefasciatus. PLoS ONE, 6(8), e23403. doi:10.1371/journal.pone.0023403
Riveron, J. M., Irving, H., Ndula, M., Barnes, K. G., Ibrahim, S. S., Paine, M. J. I., & Wondji, C. S. (2012). Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proceedings of the National Academy of Sciences, 110(1), 252-257. doi:10.1073/pnas.1216705110
Dai, S. M., & Sun, C. N. (1984). Pyrethroid Resistance and Synergism in Nilaparvata lugens Stål (Homoptera: Delphacidae) in Taiwan. Journal of Economic Entomology, 77(4), 891-897. doi:10.1093/jee/77.4.891
Gunning, R. V., Moores, G. D., & Devonshire, A. L. (1997). Esterases and Fenvalerate Resistance in a Field Population ofHelicoverpa punctigera(Lepidoptera: Noctuidae) in Australia. Pesticide Biochemistry and Physiology, 58(2), 155-162. doi:10.1006/pest.1997.2295
VONTAS, J. G., SMALL, G. J., & HEMINGWAY, J. (2001). Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemical Journal, 357(1), 65. doi:10.1042/0264-6021:3570065
Fragoso, D. B., Guedes, R. N. C., & Rezende, S. T. (2003). Glutathione S-transferase detoxification as a potential pyrethroid resistance mechanism in the maize weevil, Sitophilus zeamais. Entomologia Experimentalis et Applicata, 109(1), 21-29. doi:10.1046/j.1570-7458.2003.00085.x
DeVries, D. H., & Georghiou, G. P. (1981). Decreased nerve sensitivity and decreased cuticular penetration as mechanisms of resistance to pyrethroids in a (1R)-trans-permethrin-selected strain of the house fly. Pesticide Biochemistry and Physiology, 15(3), 234-241. doi:10.1016/0048-3575(81)90005-5
Valles, S. M., Dong, K., & Brenner, R. J. (2000). Mechanisms Responsible for Cypermethrin Resistance in a Strain of German Cockroach, Blattella germanica. Pesticide Biochemistry and Physiology, 66(3), 195-205. doi:10.1006/pest.1999.2462
Yang, Y., Chen, S., Wu, S., Yue, L., & Wu, Y. (2006). Constitutive Overexpression of Multiple Cytochrome P450 Genes Associated with Pyrethroid Resistance in Helicoverpa armigera. Journal of Economic Entomology, 99(5), 1784-1789. doi:10.1093/jee/99.5.1784
Komagata, O., Kasai, S., & Tomita, T. (2010). Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochemistry and Molecular Biology, 40(2), 146-152. doi:10.1016/j.ibmb.2010.01.006
David, J.-P., Strode, C., Vontas, J., Nikou, D., Vaughan, A., Pignatelli, P. M., … Ranson, H. (2005). The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proceedings of the National Academy of Sciences, 102(11), 4080-4084. doi:10.1073/pnas.0409348102
Joussen, N., Agnolet, S., Lorenz, S., Schone, S. E., Ellinger, R., Schneider, B., & Heckel, D. G. (2012). Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences, 109(38), 15206-15211. doi:10.1073/pnas.1202047109
Brandt, A., Scharf, M., Pedra, J. H. F., Holmes, G., Dean, A., Kreitman, M., & Pittendrigh, B. R. (2002). Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Molecular Biology, 11(4), 337-341. doi:10.1046/j.1365-2583.2002.00344.x
Bogwitz, M. R., Chung, H., Magoc, L., Rigby, S., Wong, W., O’Keefe, M., … Daborn, P. J. (2005). Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proceedings of the National Academy of Sciences, 102(36), 12807-12812. doi:10.1073/pnas.0503709102
Bautista, M. A. M., Tanaka, T., & Miyata, T. (2007). Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance. Pesticide Biochemistry and Physiology, 87(1), 85-93. doi:10.1016/j.pestbp.2006.06.004
Huang, Y., Shen, G.-M., Jiang, H.-B., Jiang, X.-Z., Dou, W., & Wang, J.-J. (2013). Multiple P450 genes: Identification, tissue-specific expression and their responses to insecticide treatments in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidea). Pesticide Biochemistry and Physiology, 106(1-2), 1-7. doi:10.1016/j.pestbp.2013.03.001
ffrench-Constant, R. H., Daborn, P. J., & Goff, G. L. (2004). The genetics and genomics of insecticide resistance. Trends in Genetics, 20(3), 163-170. doi:10.1016/j.tig.2004.01.003
Scott, J. G., & Kasai, S. (2004). Evolutionary plasticity of monooxygenase-mediated resistance. Pesticide Biochemistry and Physiology, 78(3), 171-178. doi:10.1016/j.pestbp.2004.01.002
Kamiya, E., Yamakawa, M., Shono, T., & Kono, Y. (2001). Molecular cloning, nucleotide sequences and gene expression of new cytochrome P450s (CYP6A24, CYP6D3v2) from the pyrethroid resistant housefly, Musca domestica L. (Diptera: Muscidae). Applied Entomology and Zoology, 36(2), 225-229. doi:10.1303/aez.2001.225
Zhu, F., & Liu, N. (2008). Differential expression ofCYP6A5 andCYP6A5v2 in pyrethroid-resistant house flies,Musca domestica. Archives of Insect Biochemistry and Physiology, 67(3), 107-119. doi:10.1002/arch.20225
Zhu, F., Li, T., Zhang, L., & Liu, N. (2008). Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiology, 8(1), 18. doi:10.1186/1472-6793-8-18
Zhu, F., Feng, J.-N., Zhang, L., & Liu, N. (2008). Characterization of two novel cytochrome P450 genes in insecticide-resistant house-flies. Insect Molecular Biology, 17(1), 27-37. doi:10.1111/j.1365-2583.2008.00777.x
Scott, J. G., Liu, N., Wen, Z., Smith, F. F., Kasai, S., & Horak, C. E. (1999). House-fly cytochrome P450 CYP6D1: 5′ flanking sequences and comparison of alleles. Gene, 226(2), 347-353. doi:10.1016/s0378-1119(98)00545-9
Daborn, P. J. (2002). A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science, 297(5590), 2253-2256. doi:10.1126/science.1074170
Chung, H., Bogwitz, M. R., McCart, C., Andrianopoulos, A., ffrench-Constant, R. H., Batterham, P., & Daborn, P. J. (2006). Cis-Regulatory Elements in theAccordRetrotransposon Result in Tissue-Specific Expression of theDrosophila melanogasterInsecticide Resistance GeneCyp6g1. Genetics, 175(3), 1071-1077. doi:10.1534/genetics.106.066597
Schlenke, T. A., & Begun, D. J. (2004). Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proceedings of the National Academy of Sciences, 101(6), 1626-1631. doi:10.1073/pnas.0303793101
Bhaskara, S., Dean, E. D., Lam, V., & Ganguly, R. (2006). Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene, 377, 56-64. doi:10.1016/j.gene.2006.02.032
[-]