- -

Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arouri, Rabeh es_ES
dc.contributor.author Le Goff, Gaelle es_ES
dc.contributor.author Hemden, Hiethem es_ES
dc.contributor.author Navarro-Llopis, Vicente es_ES
dc.contributor.author M'saad, Mariem es_ES
dc.contributor.author Castanera, Pedro es_ES
dc.contributor.author Feyereisen, Rene es_ES
dc.contributor.author Hernandez-Crespo, Pedro es_ES
dc.contributor.author Ortego, Felix es_ES
dc.date.accessioned 2016-05-25T12:43:09Z
dc.date.available 2016-05-25T12:43:09Z
dc.date.issued 2015-09
dc.identifier.issn 1526-498X
dc.identifier.uri http://hdl.handle.net/10251/64703
dc.description.abstract BACKGROUND The withdrawal of malathion in the European Union in 2009 resulted in a large increase in lambda-cyhalothrin applications for the control of the Mediterranean fruit fly, Ceratitis capitata, in Spanish citrus crops. RESULTS Spanish field populations of C. capitata have developed resistance to lambda-cyhalothrin (6 14-fold), achieving LC50 values (129 287 ppm) higher than the recommended concentration for field treatments (125 ppm). These results contrast with the high susceptibility to lambda-cyhalothrin found in three Tunisian field populations. We have studied the mechanism of resistance in the laboratory-selected resistant strain W-1Kλ (205-fold resistance). Bioassays with synergists showed that resistance was almost completely suppressed by the P450 inhibitor PBO. The study of the expression of 53 P450 genes belonging to the CYP4, CYP6, CYP9 and CYP12 families in C. capitata revealed that CYP6A51 was overexpressed (13 18-fold) in the resistant strain. The W-1Kλ strain also showed high levels of cross-resistance to etofenprox (240-fold) and deltamethrin (150-fold). CONCLUSION Field-evolved resistance to lambda-cyhalothrin has been found in C. capitata. Metabolic resistance mediated by P450 appears to be the main resistance mechanism in the resistant strain W-1Kλ. The levels of cross-resistance found may compromise the effectiveness of other pyrethroids for the control of this species. es_ES
dc.description.sponsorship We gratefully acknowledge the Medfly Whole Genome Sequencing Project for providing the NCBI sequence data used in this report, led by Drs Alfred Handler (USDA, Agricultural Research Service), Giuliano Gasperi (University of Pavia) and Stephen Richards (Baylor College of Medicine), and supported by funding from USDA-APHIS, USDA-ARS and NHGRI; Rafael Argiles (TRAGSA, Valencia), Ramon Tora (Unitat Sanitat Vegetal del DAR, Lleida) and Emilio Guirado (IHSM-CSIC, Malaga) for assistance in field sampling; and Maria Torne (Dow Agro-Science Iberica) and Stephen Skillman (Syngenta AG) for providing technical-grade spinosad and lufenuron respectively. This work received financial support from CICYT (AGL2010-21349-C02-01/AGR) and AECID (A/026050/09 and A/030253/10). en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Pest Management Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Fruit fly es_ES
dc.subject Pyrethroid es_ES
dc.subject Insecticide resistance es_ES
dc.subject P450 overexpression es_ES
dc.title Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ps.3924
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2010-21349-C02-01/ES/NUEVAS HERRAMIENTAS PARA EL CONTROL DE LA MOSCA MEDITERRANEA DE LA FRUTA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAEC//A%2F026050%2F09/ES/DETECCIÓN DE RESISTENCIA A INSECTICIDAS EN LA MOSCA MEDITERRÁNEA DE LA FRUTA - DÉTECTION DE LA RÉSISTANCE AUX INSECTICIDES DE LA MOUCHE MÉDITÉRRANÉENE DES FRUITS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAEC//A%2F030253%2F10/ES/DETECCIÓN DE RESISTENCIA A INSECTICIDAS EN LA MOSCA MEDITERRÁNEA DE LA FRUTA - DÉTECTION DE LA RÉSISTANCE AUX INSECTICIDES DE LA MOUCHE MÉDITÉRRANÉENE DES FRUITS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Ecología Química Agrícola - Centre d'Ecologia Química Agrícola es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.description.bibliographicCitation Arouri, R.; Le Goff, G.; Hemden, H.; Navarro-Llopis, V.; M'saad, M.; Castanera, P.; Feyereisen, R.... (2015). Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain. Pest Management Science. 71(9):1281-1291. https://doi.org/10.1002/ps.3924 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/ps.3924 es_ES
dc.description.upvformatpinicio 1281 es_ES
dc.description.upvformatpfin 1291 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 71 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 293877 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Asuntos Exteriores y Cooperación es_ES
dc.contributor.funder U.S. Department of Agriculture es_ES
dc.description.references Vontas, J., Hernández-Crespo, P., Margaritopoulos, J. T., Ortego, F., Feng, H.-T., Mathiopoulos, K. D., & Hsu, J.-C. (2011). Insecticide resistance in Tephritid flies. Pesticide Biochemistry and Physiology, 100(3), 199-205. doi:10.1016/j.pestbp.2011.04.004 es_ES
dc.description.references Magaña, C., Hernández-Crespo, P., Ortego, F., & Castañera, P. (2007). Resistance to Malathion in Field Populations of Ceratitis capitata. Journal of Economic Entomology, 100(6), 1836-1843. doi:10.1093/jee/100.6.1836 es_ES
dc.description.references Couso-Ferrer, F., Arouri, R., Beroiz, B., Perera, N., Cervera, A., Navarro-Llopis, V., … Ortego, F. (2011). Cross-Resistance to Insecticides in a Malathion-Resistant Strain of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 104(4), 1349-1356. doi:10.1603/ec11082 es_ES
dc.description.references Magaña, C., Hernández-Crespo, P., Brun-Barale, A., Couso-Ferrer, F., Bride, J.-M., Castañera, P., … Ortego, F. (2008). Mechanisms of resistance to malathion in the medfly Ceratitis capitata. Insect Biochemistry and Molecular Biology, 38(8), 756-762. doi:10.1016/j.ibmb.2008.05.001 es_ES
dc.description.references Chen, W.-L., & Sun, C.-N. (1994). Purification and characterization of carboxylesterases of a rice brown planthopper, Nilaparvata lugens Stål. Insect Biochemistry and Molecular Biology, 24(4), 347-355. doi:10.1016/0965-1748(94)90027-2 es_ES
dc.description.references Bisset, J., Rodriguez, M., Soca, A., Pasteur, N., & Raymond, M. (1997). Cross-Resistance to Pyrethroid and Organophosphorus Insecticides in the Southern House Mosquito (Diptera: Culicidae) from Cuba. Journal of Medical Entomology, 34(2), 244-246. doi:10.1093/jmedent/34.2.244 es_ES
dc.description.references Heidari, R., Devonshire, A. L., Campbell, B. E., Dorrian, S. J., Oakeshott, J. G., & Russell, R. J. (2005). Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochemistry and Molecular Biology, 35(6), 597-609. doi:10.1016/j.ibmb.2005.02.018 es_ES
dc.description.references Soderlund, D. M., & Knipple, D. C. (2003). The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 33(6), 563-577. doi:10.1016/s0965-1748(03)00023-7 es_ES
dc.description.references Davies, T. E., O’Reilly, A. O., Field, L. M., Wallace, B., & Williamson, M. S. (2008). Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling. Pest Management Science, 64(11), 1126-1130. doi:10.1002/ps.1617 es_ES
dc.description.references Feyereisen, R. (2012). Insect CYP Genes and P450 Enzymes. Insect Molecular Biology and Biochemistry, 236-316. doi:10.1016/b978-0-12-384747-8.10008-x es_ES
dc.description.references Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annual Review of Entomology, 52(1), 231-253. doi:10.1146/annurev.ento.51.110104.151104 es_ES
dc.description.references Lin, Y., Jin, T., Zeng, L., & Lu, Y. (2012). Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pesticide Biochemistry and Physiology, 103(3), 189-193. doi:10.1016/j.pestbp.2012.05.002 es_ES
dc.description.references POLO-PC, User's Guide to Probit or Logit Analysis LeOra Software Berkeley, CA 1987 es_ES
dc.description.references Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e-45. doi:10.1093/nar/29.9.e45 es_ES
dc.description.references Hsu, J.-C., Feng, H.-T., & Wu, W.-J. (2004). Resistance and Synergistic Effects of Insecticides in <I>Bactrocera dorsalis</I> (Diptera: Tephritidae) in Taiwan. Journal of Economic Entomology, 97(5), 1682-1688. doi:10.1603/0022-0493-97.5.1682 es_ES
dc.description.references Sheppard, C. D., & Joyce, J. A. (1992). High Levels of Pyrethroid Resistance in Horn Flies (Diptera: Muscidae) Selected with Cyhalothrin. Journal of Economic Entomology, 85(5), 1587-1593. doi:10.1093/jee/85.5.1587 es_ES
dc.description.references Liu, N., & Yue, X. (2000). Insecticide Resistance and Cross-Resistance in the House Fly (Diptera: Muscidae). Journal of Economic Entomology, 93(4), 1269-1275. doi:10.1603/0022-0493-93.4.1269 es_ES
dc.description.references Hemingway, J., Hawkes, N. J., McCarroll, L., & Ranson, H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7), 653-665. doi:10.1016/j.ibmb.2004.03.018 es_ES
dc.description.references Soderlund, D. M. (2008). Pyrethroids, knockdown resistance and sodium channels. Pest Management Science, 64(6), 610-616. doi:10.1002/ps.1574 es_ES
dc.description.references Liu, N., Li, T., Reid, W. R., Yang, T., & Zhang, L. (2011). Multiple Cytochrome P450 Genes: Their Constitutive Overexpression and Permethrin Induction in Insecticide Resistant Mosquitoes, Culex quinquefasciatus. PLoS ONE, 6(8), e23403. doi:10.1371/journal.pone.0023403 es_ES
dc.description.references Riveron, J. M., Irving, H., Ndula, M., Barnes, K. G., Ibrahim, S. S., Paine, M. J. I., & Wondji, C. S. (2012). Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proceedings of the National Academy of Sciences, 110(1), 252-257. doi:10.1073/pnas.1216705110 es_ES
dc.description.references Dai, S. M., & Sun, C. N. (1984). Pyrethroid Resistance and Synergism in Nilaparvata lugens Stål (Homoptera: Delphacidae) in Taiwan. Journal of Economic Entomology, 77(4), 891-897. doi:10.1093/jee/77.4.891 es_ES
dc.description.references Gunning, R. V., Moores, G. D., & Devonshire, A. L. (1997). Esterases and Fenvalerate Resistance in a Field Population ofHelicoverpa punctigera(Lepidoptera: Noctuidae) in Australia. Pesticide Biochemistry and Physiology, 58(2), 155-162. doi:10.1006/pest.1997.2295 es_ES
dc.description.references VONTAS, J. G., SMALL, G. J., & HEMINGWAY, J. (2001). Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemical Journal, 357(1), 65. doi:10.1042/0264-6021:3570065 es_ES
dc.description.references Fragoso, D. B., Guedes, R. N. C., & Rezende, S. T. (2003). Glutathione S-transferase detoxification as a potential pyrethroid resistance mechanism in the maize weevil, Sitophilus zeamais. Entomologia Experimentalis et Applicata, 109(1), 21-29. doi:10.1046/j.1570-7458.2003.00085.x es_ES
dc.description.references DeVries, D. H., & Georghiou, G. P. (1981). Decreased nerve sensitivity and decreased cuticular penetration as mechanisms of resistance to pyrethroids in a (1R)-trans-permethrin-selected strain of the house fly. Pesticide Biochemistry and Physiology, 15(3), 234-241. doi:10.1016/0048-3575(81)90005-5 es_ES
dc.description.references Valles, S. M., Dong, K., & Brenner, R. J. (2000). Mechanisms Responsible for Cypermethrin Resistance in a Strain of German Cockroach, Blattella germanica. Pesticide Biochemistry and Physiology, 66(3), 195-205. doi:10.1006/pest.1999.2462 es_ES
dc.description.references Yang, Y., Chen, S., Wu, S., Yue, L., & Wu, Y. (2006). Constitutive Overexpression of Multiple Cytochrome P450 Genes Associated with Pyrethroid Resistance in Helicoverpa armigera. Journal of Economic Entomology, 99(5), 1784-1789. doi:10.1093/jee/99.5.1784 es_ES
dc.description.references Komagata, O., Kasai, S., & Tomita, T. (2010). Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochemistry and Molecular Biology, 40(2), 146-152. doi:10.1016/j.ibmb.2010.01.006 es_ES
dc.description.references David, J.-P., Strode, C., Vontas, J., Nikou, D., Vaughan, A., Pignatelli, P. M., … Ranson, H. (2005). The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proceedings of the National Academy of Sciences, 102(11), 4080-4084. doi:10.1073/pnas.0409348102 es_ES
dc.description.references Joussen, N., Agnolet, S., Lorenz, S., Schone, S. E., Ellinger, R., Schneider, B., & Heckel, D. G. (2012). Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences, 109(38), 15206-15211. doi:10.1073/pnas.1202047109 es_ES
dc.description.references Brandt, A., Scharf, M., Pedra, J. H. F., Holmes, G., Dean, A., Kreitman, M., & Pittendrigh, B. R. (2002). Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Molecular Biology, 11(4), 337-341. doi:10.1046/j.1365-2583.2002.00344.x es_ES
dc.description.references Bogwitz, M. R., Chung, H., Magoc, L., Rigby, S., Wong, W., O’Keefe, M., … Daborn, P. J. (2005). Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proceedings of the National Academy of Sciences, 102(36), 12807-12812. doi:10.1073/pnas.0503709102 es_ES
dc.description.references Bautista, M. A. M., Tanaka, T., & Miyata, T. (2007). Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance. Pesticide Biochemistry and Physiology, 87(1), 85-93. doi:10.1016/j.pestbp.2006.06.004 es_ES
dc.description.references Huang, Y., Shen, G.-M., Jiang, H.-B., Jiang, X.-Z., Dou, W., & Wang, J.-J. (2013). Multiple P450 genes: Identification, tissue-specific expression and their responses to insecticide treatments in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidea). Pesticide Biochemistry and Physiology, 106(1-2), 1-7. doi:10.1016/j.pestbp.2013.03.001 es_ES
dc.description.references ffrench-Constant, R. H., Daborn, P. J., & Goff, G. L. (2004). The genetics and genomics of insecticide resistance. Trends in Genetics, 20(3), 163-170. doi:10.1016/j.tig.2004.01.003 es_ES
dc.description.references Scott, J. G., & Kasai, S. (2004). Evolutionary plasticity of monooxygenase-mediated resistance. Pesticide Biochemistry and Physiology, 78(3), 171-178. doi:10.1016/j.pestbp.2004.01.002 es_ES
dc.description.references Kamiya, E., Yamakawa, M., Shono, T., & Kono, Y. (2001). Molecular cloning, nucleotide sequences and gene expression of new cytochrome P450s (CYP6A24, CYP6D3v2) from the pyrethroid resistant housefly, Musca domestica L. (Diptera: Muscidae). Applied Entomology and Zoology, 36(2), 225-229. doi:10.1303/aez.2001.225 es_ES
dc.description.references Zhu, F., & Liu, N. (2008). Differential expression ofCYP6A5 andCYP6A5v2 in pyrethroid-resistant house flies,Musca domestica. Archives of Insect Biochemistry and Physiology, 67(3), 107-119. doi:10.1002/arch.20225 es_ES
dc.description.references Zhu, F., Li, T., Zhang, L., & Liu, N. (2008). Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiology, 8(1), 18. doi:10.1186/1472-6793-8-18 es_ES
dc.description.references Zhu, F., Feng, J.-N., Zhang, L., & Liu, N. (2008). Characterization of two novel cytochrome P450 genes in insecticide-resistant house-flies. Insect Molecular Biology, 17(1), 27-37. doi:10.1111/j.1365-2583.2008.00777.x es_ES
dc.description.references Scott, J. G., Liu, N., Wen, Z., Smith, F. F., Kasai, S., & Horak, C. E. (1999). House-fly cytochrome P450 CYP6D1: 5′ flanking sequences and comparison of alleles. Gene, 226(2), 347-353. doi:10.1016/s0378-1119(98)00545-9 es_ES
dc.description.references Daborn, P. J. (2002). A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science, 297(5590), 2253-2256. doi:10.1126/science.1074170 es_ES
dc.description.references Chung, H., Bogwitz, M. R., McCart, C., Andrianopoulos, A., ffrench-Constant, R. H., Batterham, P., & Daborn, P. J. (2006). Cis-Regulatory Elements in theAccordRetrotransposon Result in Tissue-Specific Expression of theDrosophila melanogasterInsecticide Resistance GeneCyp6g1. Genetics, 175(3), 1071-1077. doi:10.1534/genetics.106.066597 es_ES
dc.description.references Schlenke, T. A., & Begun, D. J. (2004). Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proceedings of the National Academy of Sciences, 101(6), 1626-1631. doi:10.1073/pnas.0303793101 es_ES
dc.description.references Bhaskara, S., Dean, E. D., Lam, V., & Ganguly, R. (2006). Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene, 377, 56-64. doi:10.1016/j.gene.2006.02.032 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem