Mostrar el registro sencillo del ítem
dc.contributor.author | Arouri, Rabeh | es_ES |
dc.contributor.author | Le Goff, Gaelle | es_ES |
dc.contributor.author | Hemden, Hiethem | es_ES |
dc.contributor.author | Navarro-Llopis, Vicente | es_ES |
dc.contributor.author | M'saad, Mariem | es_ES |
dc.contributor.author | Castanera, Pedro | es_ES |
dc.contributor.author | Feyereisen, Rene | es_ES |
dc.contributor.author | Hernandez-Crespo, Pedro | es_ES |
dc.contributor.author | Ortego, Felix | es_ES |
dc.date.accessioned | 2016-05-25T12:43:09Z | |
dc.date.available | 2016-05-25T12:43:09Z | |
dc.date.issued | 2015-09 | |
dc.identifier.issn | 1526-498X | |
dc.identifier.uri | http://hdl.handle.net/10251/64703 | |
dc.description.abstract | BACKGROUND The withdrawal of malathion in the European Union in 2009 resulted in a large increase in lambda-cyhalothrin applications for the control of the Mediterranean fruit fly, Ceratitis capitata, in Spanish citrus crops. RESULTS Spanish field populations of C. capitata have developed resistance to lambda-cyhalothrin (6 14-fold), achieving LC50 values (129 287 ppm) higher than the recommended concentration for field treatments (125 ppm). These results contrast with the high susceptibility to lambda-cyhalothrin found in three Tunisian field populations. We have studied the mechanism of resistance in the laboratory-selected resistant strain W-1Kλ (205-fold resistance). Bioassays with synergists showed that resistance was almost completely suppressed by the P450 inhibitor PBO. The study of the expression of 53 P450 genes belonging to the CYP4, CYP6, CYP9 and CYP12 families in C. capitata revealed that CYP6A51 was overexpressed (13 18-fold) in the resistant strain. The W-1Kλ strain also showed high levels of cross-resistance to etofenprox (240-fold) and deltamethrin (150-fold). CONCLUSION Field-evolved resistance to lambda-cyhalothrin has been found in C. capitata. Metabolic resistance mediated by P450 appears to be the main resistance mechanism in the resistant strain W-1Kλ. The levels of cross-resistance found may compromise the effectiveness of other pyrethroids for the control of this species. | es_ES |
dc.description.sponsorship | We gratefully acknowledge the Medfly Whole Genome Sequencing Project for providing the NCBI sequence data used in this report, led by Drs Alfred Handler (USDA, Agricultural Research Service), Giuliano Gasperi (University of Pavia) and Stephen Richards (Baylor College of Medicine), and supported by funding from USDA-APHIS, USDA-ARS and NHGRI; Rafael Argiles (TRAGSA, Valencia), Ramon Tora (Unitat Sanitat Vegetal del DAR, Lleida) and Emilio Guirado (IHSM-CSIC, Malaga) for assistance in field sampling; and Maria Torne (Dow Agro-Science Iberica) and Stephen Skillman (Syngenta AG) for providing technical-grade spinosad and lufenuron respectively. This work received financial support from CICYT (AGL2010-21349-C02-01/AGR) and AECID (A/026050/09 and A/030253/10). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Pest Management Science | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Fruit fly | es_ES |
dc.subject | Pyrethroid | es_ES |
dc.subject | Insecticide resistance | es_ES |
dc.subject | P450 overexpression | es_ES |
dc.title | Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/ps.3924 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-21349-C02-01/ES/NUEVAS HERRAMIENTAS PARA EL CONTROL DE LA MOSCA MEDITERRANEA DE LA FRUTA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MAEC//A%2F026050%2F09/ES/DETECCIÓN DE RESISTENCIA A INSECTICIDAS EN LA MOSCA MEDITERRÁNEA DE LA FRUTA - DÉTECTION DE LA RÉSISTANCE AUX INSECTICIDES DE LA MOUCHE MÉDITÉRRANÉENE DES FRUITS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MAEC//A%2F030253%2F10/ES/DETECCIÓN DE RESISTENCIA A INSECTICIDAS EN LA MOSCA MEDITERRÁNEA DE LA FRUTA - DÉTECTION DE LA RÉSISTANCE AUX INSECTICIDES DE LA MOUCHE MÉDITÉRRANÉENE DES FRUITS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Ecología Química Agrícola - Centre d'Ecologia Química Agrícola | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.description.bibliographicCitation | Arouri, R.; Le Goff, G.; Hemden, H.; Navarro-Llopis, V.; M'saad, M.; Castanera, P.; Feyereisen, R.... (2015). Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain. Pest Management Science. 71(9):1281-1291. https://doi.org/10.1002/ps.3924 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/ps.3924 | es_ES |
dc.description.upvformatpinicio | 1281 | es_ES |
dc.description.upvformatpfin | 1291 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 71 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 293877 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Asuntos Exteriores y Cooperación | es_ES |
dc.contributor.funder | U.S. Department of Agriculture | es_ES |
dc.description.references | Vontas, J., Hernández-Crespo, P., Margaritopoulos, J. T., Ortego, F., Feng, H.-T., Mathiopoulos, K. D., & Hsu, J.-C. (2011). Insecticide resistance in Tephritid flies. Pesticide Biochemistry and Physiology, 100(3), 199-205. doi:10.1016/j.pestbp.2011.04.004 | es_ES |
dc.description.references | Magaña, C., Hernández-Crespo, P., Ortego, F., & Castañera, P. (2007). Resistance to Malathion in Field Populations of Ceratitis capitata. Journal of Economic Entomology, 100(6), 1836-1843. doi:10.1093/jee/100.6.1836 | es_ES |
dc.description.references | Couso-Ferrer, F., Arouri, R., Beroiz, B., Perera, N., Cervera, A., Navarro-Llopis, V., … Ortego, F. (2011). Cross-Resistance to Insecticides in a Malathion-Resistant Strain of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 104(4), 1349-1356. doi:10.1603/ec11082 | es_ES |
dc.description.references | Magaña, C., Hernández-Crespo, P., Brun-Barale, A., Couso-Ferrer, F., Bride, J.-M., Castañera, P., … Ortego, F. (2008). Mechanisms of resistance to malathion in the medfly Ceratitis capitata. Insect Biochemistry and Molecular Biology, 38(8), 756-762. doi:10.1016/j.ibmb.2008.05.001 | es_ES |
dc.description.references | Chen, W.-L., & Sun, C.-N. (1994). Purification and characterization of carboxylesterases of a rice brown planthopper, Nilaparvata lugens Stål. Insect Biochemistry and Molecular Biology, 24(4), 347-355. doi:10.1016/0965-1748(94)90027-2 | es_ES |
dc.description.references | Bisset, J., Rodriguez, M., Soca, A., Pasteur, N., & Raymond, M. (1997). Cross-Resistance to Pyrethroid and Organophosphorus Insecticides in the Southern House Mosquito (Diptera: Culicidae) from Cuba. Journal of Medical Entomology, 34(2), 244-246. doi:10.1093/jmedent/34.2.244 | es_ES |
dc.description.references | Heidari, R., Devonshire, A. L., Campbell, B. E., Dorrian, S. J., Oakeshott, J. G., & Russell, R. J. (2005). Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochemistry and Molecular Biology, 35(6), 597-609. doi:10.1016/j.ibmb.2005.02.018 | es_ES |
dc.description.references | Soderlund, D. M., & Knipple, D. C. (2003). The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 33(6), 563-577. doi:10.1016/s0965-1748(03)00023-7 | es_ES |
dc.description.references | Davies, T. E., O’Reilly, A. O., Field, L. M., Wallace, B., & Williamson, M. S. (2008). Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling. Pest Management Science, 64(11), 1126-1130. doi:10.1002/ps.1617 | es_ES |
dc.description.references | Feyereisen, R. (2012). Insect CYP Genes and P450 Enzymes. Insect Molecular Biology and Biochemistry, 236-316. doi:10.1016/b978-0-12-384747-8.10008-x | es_ES |
dc.description.references | Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annual Review of Entomology, 52(1), 231-253. doi:10.1146/annurev.ento.51.110104.151104 | es_ES |
dc.description.references | Lin, Y., Jin, T., Zeng, L., & Lu, Y. (2012). Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pesticide Biochemistry and Physiology, 103(3), 189-193. doi:10.1016/j.pestbp.2012.05.002 | es_ES |
dc.description.references | POLO-PC, User's Guide to Probit or Logit Analysis LeOra Software Berkeley, CA 1987 | es_ES |
dc.description.references | Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e-45. doi:10.1093/nar/29.9.e45 | es_ES |
dc.description.references | Hsu, J.-C., Feng, H.-T., & Wu, W.-J. (2004). Resistance and Synergistic Effects of Insecticides in <I>Bactrocera dorsalis</I> (Diptera: Tephritidae) in Taiwan. Journal of Economic Entomology, 97(5), 1682-1688. doi:10.1603/0022-0493-97.5.1682 | es_ES |
dc.description.references | Sheppard, C. D., & Joyce, J. A. (1992). High Levels of Pyrethroid Resistance in Horn Flies (Diptera: Muscidae) Selected with Cyhalothrin. Journal of Economic Entomology, 85(5), 1587-1593. doi:10.1093/jee/85.5.1587 | es_ES |
dc.description.references | Liu, N., & Yue, X. (2000). Insecticide Resistance and Cross-Resistance in the House Fly (Diptera: Muscidae). Journal of Economic Entomology, 93(4), 1269-1275. doi:10.1603/0022-0493-93.4.1269 | es_ES |
dc.description.references | Hemingway, J., Hawkes, N. J., McCarroll, L., & Ranson, H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7), 653-665. doi:10.1016/j.ibmb.2004.03.018 | es_ES |
dc.description.references | Soderlund, D. M. (2008). Pyrethroids, knockdown resistance and sodium channels. Pest Management Science, 64(6), 610-616. doi:10.1002/ps.1574 | es_ES |
dc.description.references | Liu, N., Li, T., Reid, W. R., Yang, T., & Zhang, L. (2011). Multiple Cytochrome P450 Genes: Their Constitutive Overexpression and Permethrin Induction in Insecticide Resistant Mosquitoes, Culex quinquefasciatus. PLoS ONE, 6(8), e23403. doi:10.1371/journal.pone.0023403 | es_ES |
dc.description.references | Riveron, J. M., Irving, H., Ndula, M., Barnes, K. G., Ibrahim, S. S., Paine, M. J. I., & Wondji, C. S. (2012). Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proceedings of the National Academy of Sciences, 110(1), 252-257. doi:10.1073/pnas.1216705110 | es_ES |
dc.description.references | Dai, S. M., & Sun, C. N. (1984). Pyrethroid Resistance and Synergism in Nilaparvata lugens Stål (Homoptera: Delphacidae) in Taiwan. Journal of Economic Entomology, 77(4), 891-897. doi:10.1093/jee/77.4.891 | es_ES |
dc.description.references | Gunning, R. V., Moores, G. D., & Devonshire, A. L. (1997). Esterases and Fenvalerate Resistance in a Field Population ofHelicoverpa punctigera(Lepidoptera: Noctuidae) in Australia. Pesticide Biochemistry and Physiology, 58(2), 155-162. doi:10.1006/pest.1997.2295 | es_ES |
dc.description.references | VONTAS, J. G., SMALL, G. J., & HEMINGWAY, J. (2001). Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemical Journal, 357(1), 65. doi:10.1042/0264-6021:3570065 | es_ES |
dc.description.references | Fragoso, D. B., Guedes, R. N. C., & Rezende, S. T. (2003). Glutathione S-transferase detoxification as a potential pyrethroid resistance mechanism in the maize weevil, Sitophilus zeamais. Entomologia Experimentalis et Applicata, 109(1), 21-29. doi:10.1046/j.1570-7458.2003.00085.x | es_ES |
dc.description.references | DeVries, D. H., & Georghiou, G. P. (1981). Decreased nerve sensitivity and decreased cuticular penetration as mechanisms of resistance to pyrethroids in a (1R)-trans-permethrin-selected strain of the house fly. Pesticide Biochemistry and Physiology, 15(3), 234-241. doi:10.1016/0048-3575(81)90005-5 | es_ES |
dc.description.references | Valles, S. M., Dong, K., & Brenner, R. J. (2000). Mechanisms Responsible for Cypermethrin Resistance in a Strain of German Cockroach, Blattella germanica. Pesticide Biochemistry and Physiology, 66(3), 195-205. doi:10.1006/pest.1999.2462 | es_ES |
dc.description.references | Yang, Y., Chen, S., Wu, S., Yue, L., & Wu, Y. (2006). Constitutive Overexpression of Multiple Cytochrome P450 Genes Associated with Pyrethroid Resistance in Helicoverpa armigera. Journal of Economic Entomology, 99(5), 1784-1789. doi:10.1093/jee/99.5.1784 | es_ES |
dc.description.references | Komagata, O., Kasai, S., & Tomita, T. (2010). Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochemistry and Molecular Biology, 40(2), 146-152. doi:10.1016/j.ibmb.2010.01.006 | es_ES |
dc.description.references | David, J.-P., Strode, C., Vontas, J., Nikou, D., Vaughan, A., Pignatelli, P. M., … Ranson, H. (2005). The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proceedings of the National Academy of Sciences, 102(11), 4080-4084. doi:10.1073/pnas.0409348102 | es_ES |
dc.description.references | Joussen, N., Agnolet, S., Lorenz, S., Schone, S. E., Ellinger, R., Schneider, B., & Heckel, D. G. (2012). Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences, 109(38), 15206-15211. doi:10.1073/pnas.1202047109 | es_ES |
dc.description.references | Brandt, A., Scharf, M., Pedra, J. H. F., Holmes, G., Dean, A., Kreitman, M., & Pittendrigh, B. R. (2002). Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Molecular Biology, 11(4), 337-341. doi:10.1046/j.1365-2583.2002.00344.x | es_ES |
dc.description.references | Bogwitz, M. R., Chung, H., Magoc, L., Rigby, S., Wong, W., O’Keefe, M., … Daborn, P. J. (2005). Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proceedings of the National Academy of Sciences, 102(36), 12807-12812. doi:10.1073/pnas.0503709102 | es_ES |
dc.description.references | Bautista, M. A. M., Tanaka, T., & Miyata, T. (2007). Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance. Pesticide Biochemistry and Physiology, 87(1), 85-93. doi:10.1016/j.pestbp.2006.06.004 | es_ES |
dc.description.references | Huang, Y., Shen, G.-M., Jiang, H.-B., Jiang, X.-Z., Dou, W., & Wang, J.-J. (2013). Multiple P450 genes: Identification, tissue-specific expression and their responses to insecticide treatments in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidea). Pesticide Biochemistry and Physiology, 106(1-2), 1-7. doi:10.1016/j.pestbp.2013.03.001 | es_ES |
dc.description.references | ffrench-Constant, R. H., Daborn, P. J., & Goff, G. L. (2004). The genetics and genomics of insecticide resistance. Trends in Genetics, 20(3), 163-170. doi:10.1016/j.tig.2004.01.003 | es_ES |
dc.description.references | Scott, J. G., & Kasai, S. (2004). Evolutionary plasticity of monooxygenase-mediated resistance. Pesticide Biochemistry and Physiology, 78(3), 171-178. doi:10.1016/j.pestbp.2004.01.002 | es_ES |
dc.description.references | Kamiya, E., Yamakawa, M., Shono, T., & Kono, Y. (2001). Molecular cloning, nucleotide sequences and gene expression of new cytochrome P450s (CYP6A24, CYP6D3v2) from the pyrethroid resistant housefly, Musca domestica L. (Diptera: Muscidae). Applied Entomology and Zoology, 36(2), 225-229. doi:10.1303/aez.2001.225 | es_ES |
dc.description.references | Zhu, F., & Liu, N. (2008). Differential expression ofCYP6A5 andCYP6A5v2 in pyrethroid-resistant house flies,Musca domestica. Archives of Insect Biochemistry and Physiology, 67(3), 107-119. doi:10.1002/arch.20225 | es_ES |
dc.description.references | Zhu, F., Li, T., Zhang, L., & Liu, N. (2008). Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiology, 8(1), 18. doi:10.1186/1472-6793-8-18 | es_ES |
dc.description.references | Zhu, F., Feng, J.-N., Zhang, L., & Liu, N. (2008). Characterization of two novel cytochrome P450 genes in insecticide-resistant house-flies. Insect Molecular Biology, 17(1), 27-37. doi:10.1111/j.1365-2583.2008.00777.x | es_ES |
dc.description.references | Scott, J. G., Liu, N., Wen, Z., Smith, F. F., Kasai, S., & Horak, C. E. (1999). House-fly cytochrome P450 CYP6D1: 5′ flanking sequences and comparison of alleles. Gene, 226(2), 347-353. doi:10.1016/s0378-1119(98)00545-9 | es_ES |
dc.description.references | Daborn, P. J. (2002). A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science, 297(5590), 2253-2256. doi:10.1126/science.1074170 | es_ES |
dc.description.references | Chung, H., Bogwitz, M. R., McCart, C., Andrianopoulos, A., ffrench-Constant, R. H., Batterham, P., & Daborn, P. J. (2006). Cis-Regulatory Elements in theAccordRetrotransposon Result in Tissue-Specific Expression of theDrosophila melanogasterInsecticide Resistance GeneCyp6g1. Genetics, 175(3), 1071-1077. doi:10.1534/genetics.106.066597 | es_ES |
dc.description.references | Schlenke, T. A., & Begun, D. J. (2004). Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proceedings of the National Academy of Sciences, 101(6), 1626-1631. doi:10.1073/pnas.0303793101 | es_ES |
dc.description.references | Bhaskara, S., Dean, E. D., Lam, V., & Ganguly, R. (2006). Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene, 377, 56-64. doi:10.1016/j.gene.2006.02.032 | es_ES |