- -

Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon

Mostrar el registro completo del ítem

Castera Molada, P.; Tulli, D.; Gutiérrez Campo, AM.; Sanchis Kilders, P. (2015). Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon. Optics Express. 23(12):15332-15342. https://doi.org/10.1364/OE.23.015332

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65201

Ficheros en el ítem

Metadatos del ítem

Título: Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon
Autor: Castera Molada, Pau Tulli, Domenico Gutiérrez Campo, Ana María Sanchis Kilders, Pablo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] The influence of BaTiO3 ferroelectric domain orientations for high efficiency electro-optic modulation has been thoroughly analyzed. The Mach-Zehnder modulator structure is based on a CMOS compatible silicon/BaTiO3/silicon ...[+]
Palabras clave: Waveguide modulators , Modulators , Electrooptical devices , Ferroelectrics
Derechos de uso: Cerrado
Fuente:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.23.015332
Editorial:
Optical Society of America: Open Access Journals
Versión del editor: http://dx.doi.org/10.1364/OE.23.015332
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/619456 SITOGA/EU/
info:eu-repo/grantAgreement/MINECO//TEC2012-38540/
Descripción: © 2015 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited
Agradecimientos:
This work was supported by the European Commission under project FP7-ICT-2013-11-619456 SITOGA. Financial support from TEC2012-38540 LEOMIS is also acknowledged. We also acknowledge Stefan Abel and Sebastien Cueff for their ...[+]
Tipo: Artículo

References

Hochberg, M., Harris, N. C., Ran Ding, Yi Zhang, Novack, A., Zhe Xuan, & Baehr-Jones, T. (2013). Silicon Photonics: The Next Fabless Semiconductor Industry. IEEE Solid-State Circuits Magazine, 5(1), 48-58. doi:10.1109/mssc.2012.2232791

Reed, G. T., Mashanovich, G., Gardes, F. Y., & Thomson, D. J. (2010). Silicon optical modulators. Nature Photonics, 4(8), 518-526. doi:10.1038/nphoton.2010.179

Jacobsen, R. S., Andersen, K. N., Borel, P. I., Fage-Pedersen, J., Frandsen, L. H., Hansen, O., … Bjarklev, A. (2006). Strained silicon as a new electro-optic material. Nature, 441(7090), 199-202. doi:10.1038/nature04706 [+]
Hochberg, M., Harris, N. C., Ran Ding, Yi Zhang, Novack, A., Zhe Xuan, & Baehr-Jones, T. (2013). Silicon Photonics: The Next Fabless Semiconductor Industry. IEEE Solid-State Circuits Magazine, 5(1), 48-58. doi:10.1109/mssc.2012.2232791

Reed, G. T., Mashanovich, G., Gardes, F. Y., & Thomson, D. J. (2010). Silicon optical modulators. Nature Photonics, 4(8), 518-526. doi:10.1038/nphoton.2010.179

Jacobsen, R. S., Andersen, K. N., Borel, P. I., Fage-Pedersen, J., Frandsen, L. H., Hansen, O., … Bjarklev, A. (2006). Strained silicon as a new electro-optic material. Nature, 441(7090), 199-202. doi:10.1038/nature04706

Damas, P., Le Roux, X., Le Bourdais, D., Cassan, E., Marris-Morini, D., Izard, N., … Vivien, L. (2014). Wavelength dependence of Pockels effect in strained silicon waveguides. Optics Express, 22(18), 22095. doi:10.1364/oe.22.022095

Gao, Y., Huang, X., & Xu, X. (2014). Electro-optic modulator based on a photonic crystal slab with electro-optic polymer cladding. Optics Express, 22(7), 8765. doi:10.1364/oe.22.008765

Alloatti, L., Korn, D., Palmer, R., Hillerkuss, D., Li, J., Barklund, A., … Leuthold, J. (2011). 427 Gbit/s electro-optic modulator in silicon technology. Optics Express, 19(12), 11841. doi:10.1364/oe.19.011841

Rabiei, P., Ma, J., Khan, S., Chiles, J., & Fathpour, S. (2013). Heterogeneous lithium niobate photonics on silicon substrates. Optics Express, 21(21), 25573. doi:10.1364/oe.21.025573

Chen, L., Wood, M. G., & Reano, R. M. (2013). 125 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes. Optics Express, 21(22), 27003. doi:10.1364/oe.21.027003

Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., Günter, P., Garrett, M. H., … Wu, X. (1994). Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors ofBaTiO3crystals. Physical Review B, 50(9), 5941-5949. doi:10.1103/physrevb.50.5941

Petraru, A., Schubert, J., Schmid, M., & Buchal, C. (2002). Ferroelectric BaTiO3 thin-film optical waveguide modulators. Applied Physics Letters, 81(8), 1375-1377. doi:10.1063/1.1498151

Tang, P., Towner, D. J., Hamano, T., Meier, A. L., & Wessels, B. W. (2004). Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. Optics Express, 12(24), 5962. doi:10.1364/opex.12.005962

Tang, P., Meier, A. L., Towner, D. J., & Wessels, B. W. (2005). BaTiO_3 thin-film waveguide modulator with a low voltage–length product at near-infrared wavelengths of 098 and 155 µm. Optics Letters, 30(3), 254. doi:10.1364/ol.30.000254

Dicken, M. J., Sweatlock, L. A., Pacifici, D., Lezec, H. J., Bhattacharya, K., & Atwater, H. A. (2008). Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers. Nano Letters, 8(11), 4048-4052. doi:10.1021/nl802981q

DeGui Sun, Jing Zhang, Chen Chen, Mei Kong, Jun Wang, & Huilin Jiang. (2015). Theoretical Feasibility Demonstration for Over 100 GHz Electro-Optic Modulators With c-Axis Grown BaTiO 3 Crystal Thin-Films. Journal of Lightwave Technology, 33(10), 1937-1947. doi:10.1109/jlt.2015.2388738

Abel, S., Stöferle, T., Marchiori, C., Rossel, C., Rossell, M. D., Erni, R., … Fompeyrine, J. (2013). A strong electro-optically active lead-free ferroelectric integrated on silicon. Nature Communications, 4(1). doi:10.1038/ncomms2695

Xiong, C., Pernice, W. H. P., Ngai, J. H., Reiner, J. W., Kumah, D., Walker, F. J., … Tang, H. X. (2014). Active Silicon Integrated Nanophotonics: Ferroelectric BaTiO3 Devices. Nano Letters, 14(3), 1419-1425. doi:10.1021/nl404513p

Pernice, W. H. P., Xiong, C., Walker, F. J., & Tang, H. X. (2014). Design of a Silicon Integrated Electro-Optic Modulator Using Ferroelectric BaTiO3 Films. IEEE Photonics Technology Letters, 26(13), 1344-1347. doi:10.1109/lpt.2014.2322501

Hu, X., Cueff, S., Romeo, P. R., & Orobtchouk, R. (2015). Modeling the anisotropic electro-optic interaction in hybrid silicon-ferroelectric optical modulator. Optics Express, 23(2), 1699. doi:10.1364/oe.23.001699

Sanchis, P., Blasco, J., Martinez, A., & Marti, J. (2007). Design of Silicon-Based Slot Waveguide Configurations for Optimum Nonlinear Performance. Journal of Lightwave Technology, 25(5), 1298-1305. doi:10.1109/jlt.2007.893909

Abel, S., Sousa, M., Rossel, C., Caimi, D., Rossell, M. D., Erni, R., … Marchiori, C. (2013). Controlling tetragonality and crystalline orientation in BaTiO3nano-layers grown on Si. Nanotechnology, 24(28), 285701. doi:10.1088/0957-4484/24/28/285701

Chen, D.-Y. (2005). Extraction of electro-optic coefficient in thin-film linear electro-optic Mach-Zehnder interferometers with nonperiodic intensity-voltage output characteristics. Optical Engineering, 44(3), 034601. doi:10.1117/1.1872032

Ding-Yuan Chen, & Phillips, J. D. (2006). Analysis and design optimization of electrooptic interferometric modulators for microphotonics applications. Journal of Lightwave Technology, 24(6), 2340-2346. doi:10.1109/jlt.2006.874603

Abel, S., Caimi, D., Sousa, M., Stöferle, T., Rossel, C., Marchiori, C., … Fompeyrine, J. (2012). Electro-optical properties of barium titanate films epitaxially grown on silicon. Oxide-based Materials and Devices III. doi:10.1117/12.908772

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem