Aharonov, Y., Albert, D. Z., & Vaidman, L. (1988). How the result of a measurement of a component of the spin of a spin-1/2particle can turn out to be 100. Physical Review Letters, 60(14), 1351-1354. doi:10.1103/physrevlett.60.1351
Duck, I. M., Stevenson, P. M., & Sudarshan, E. C. G. (1989). The sense in which a «weak measurement» of a spin-½ particle’s spin component yields a value 100. Physical Review D, 40(6), 2112-2117. doi:10.1103/physrevd.40.2112
Howell, J. C., Starling, D. J., Dixon, P. B., Vudyasetu, P. K., & Jordan, A. N. (2010). Interferometric weak value deflections: Quantum and classical treatments. Physical Review A, 81(3). doi:10.1103/physreva.81.033813
[+]
Aharonov, Y., Albert, D. Z., & Vaidman, L. (1988). How the result of a measurement of a component of the spin of a spin-1/2particle can turn out to be 100. Physical Review Letters, 60(14), 1351-1354. doi:10.1103/physrevlett.60.1351
Duck, I. M., Stevenson, P. M., & Sudarshan, E. C. G. (1989). The sense in which a «weak measurement» of a spin-½ particle’s spin component yields a value 100. Physical Review D, 40(6), 2112-2117. doi:10.1103/physrevd.40.2112
Howell, J. C., Starling, D. J., Dixon, P. B., Vudyasetu, P. K., & Jordan, A. N. (2010). Interferometric weak value deflections: Quantum and classical treatments. Physical Review A, 81(3). doi:10.1103/physreva.81.033813
Torres, J. P., Puentes, G., Hermosa, N., & Salazar-Serrano, L. J. (2012). Weak interference in the high-signal regime. Optics Express, 20(17), 18869. doi:10.1364/oe.20.018869
Ritchie, N. W. M., Story, J. G., & Hulet, R. G. (1991). Realization of a measurement of a ‘‘weak value’’. Physical Review Letters, 66(9), 1107-1110. doi:10.1103/physrevlett.66.1107
Hosten, O., & Kwiat, P. (2008). Observation of the Spin Hall Effect of Light via Weak Measurements. Science, 319(5864), 787-790. doi:10.1126/science.1152697
Dixon, P. B., Starling, D. J., Jordan, A. N., & Howell, J. C. (2009). Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification. Physical Review Letters, 102(17). doi:10.1103/physrevlett.102.173601
Starling, D. J., Dixon, P. B., Jordan, A. N., & Howell, J. C. (2010). Precision frequency measurements with interferometric weak values. Physical Review A, 82(6). doi:10.1103/physreva.82.063822
Xu, X.-Y., Kedem, Y., Sun, K., Vaidman, L., Li, C.-F., & Guo, G.-C. (2013). Phase Estimation with Weak Measurement Using a White Light Source. Physical Review Letters, 111(3). doi:10.1103/physrevlett.111.033604
Salazar-Serrano, L. J., Janner, D., Brunner, N., Pruneri, V., & Torres, J. P. (2014). Measurement of sub-pulse-width temporal delays via spectral interference induced by weak value amplification. Physical Review A, 89(1). doi:10.1103/physreva.89.012126
TAHIR, B. A., ALI, J., & ABDUL RAHMAN, R. (2009). FIBER BRAGG GRATING BASED SYSTEM FOR TEMPERATURE MEASUREMENTS. International Journal of Modern Physics B, 23(10), 2349-2356. doi:10.1142/s0217979209052091
Ricchiuti, A. L., Barrera, D., Nonaka, K., & Sales, S. (2014). Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis. Optics Letters, 39(19), 5729. doi:10.1364/ol.39.005729
Egan, P., & Stone, J. A. (2012). Weak-value thermostat with 02 mK precision. Optics Letters, 37(23), 4991. doi:10.1364/ol.37.004991
Salazar-Serrano, L. J., Valencia, A., & Torres, J. P. (2014). Observation of spectral interference for any path difference in an interferometer. Optics Letters, 39(15), 4478. doi:10.1364/ol.39.004478
[-]