Faeth, G. ., Hsiang, L.-P., & Wu, P.-K. (1995). Structure and breakup properties of sprays. International Journal of Multiphase Flow, 21, 99-127. doi:10.1016/0301-9322(95)00059-7
Park, S. H., Suh, H. K., & Lee, C. S. (2009). Effect of Bioethanol−Biodiesel Blending Ratio on Fuel Spray Behavior and Atomization Characteristics. Energy & Fuels, 23(8), 4092-4098. doi:10.1021/ef900068a
PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009
[+]
Faeth, G. ., Hsiang, L.-P., & Wu, P.-K. (1995). Structure and breakup properties of sprays. International Journal of Multiphase Flow, 21, 99-127. doi:10.1016/0301-9322(95)00059-7
Park, S. H., Suh, H. K., & Lee, C. S. (2009). Effect of Bioethanol−Biodiesel Blending Ratio on Fuel Spray Behavior and Atomization Characteristics. Energy & Fuels, 23(8), 4092-4098. doi:10.1021/ef900068a
PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009
Suh, H. K., & Lee, C. S. (2008). Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics. International Journal of Heat and Fluid Flow, 29(4), 1001-1009. doi:10.1016/j.ijheatfluidflow.2008.03.014
Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 29(10), 2051-2060. doi:10.1016/j.applthermaleng.2008.10.009
Park, S. H., Kim, S. H., & Lee, C. S. (2009). Mixing Stability and Spray Behavior Characteristics of Diesel−Ethanol−Methyl Ester Blended Fuels in a Common-Rail Diesel Injection System. Energy & Fuels, 23(10), 5228-5235. doi:10.1021/ef9004847
Desantes, J. M., Payri, R., Salvador, F. J., & Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85(7-8), 910-917. doi:10.1016/j.fuel.2005.10.023
Desantes, J. M., Payri, R., Garcia, J. M., & Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 86(7-8), 1093-1101. doi:10.1016/j.fuel.2006.10.011
Badock, C., Wirth, R., Fath, A., & Leipertz, A. (1999). Investigation of cavitation in real size diesel injection nozzles. International Journal of Heat and Fluid Flow, 20(5), 538-544. doi:10.1016/s0142-727x(99)00043-0
Som, S., Aggarwal, S. K., El-Hannouny, E. M., & Longman, D. E. (2010). Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector. Journal of Engineering for Gas Turbines and Power, 132(4). doi:10.1115/1.3203146
Macian, V., Payri, R., Margot, X., & Salvador, F. J. (2003). A CFD ANALYSIS OF THE INFLUENCE OF DIESEL NOZZLE GEOMETRY ON THE INCEPTION OF CAVITATION. Atomization and Sprays, 13(5-6), 579-604. doi:10.1615/atomizspr.v13.i56.80
Alajbegovic, A., Meister, G., Greif, D., & Basara, B. (2002). Three phase cavitating flows in high-pressure swirl injectors. Experimental Thermal and Fluid Science, 26(6-7), 677-681. doi:10.1016/s0894-1777(02)00179-6
Unverdi, S. O., & Tryggvason, G. (1992). A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics, 100(1), 25-37. doi:10.1016/0021-9991(92)90307-k
Brackbill, J. ., Kothe, D. ., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. doi:10.1016/0021-9991(92)90240-y
Plesset M, Devine R. Effect of exposure time on cavitation damage. Report (Office of Naval Research Contract Nonr-220(28)), California Institute of Technology, Pasadena, California, USA, 1965.
Chen, Y., & Heister, S. D. (1996). MODELING CAVITATING FLOWS IN DIESEL INJECTORS. Atomization and Sprays, 6(6), 709-726. doi:10.1615/atomizspr.v6.i6.50
Vortmann, C., Schnerr, G. H., & Seelecke, S. (2003). Thermodynamic modeling and simulation of cavitating nozzle flow. International Journal of Heat and Fluid Flow, 24(5), 774-783. doi:10.1016/s0142-727x(03)00003-1
Echouchene, F., Belmabrouk, H., Le Penven, L., & Buffat, M. (2011). Numerical simulation of wall roughness effects in cavitating flow. International Journal of Heat and Fluid Flow, 32(5), 1068-1075. doi:10.1016/j.ijheatfluidflow.2011.05.010
Salvador, F. J., Romero, J.-V., Roselló, M.-D., & Martínez-López, J. (2010). Validation of a code for modeling cavitation phenomena in Diesel injector nozzles. Mathematical and Computer Modelling, 52(7-8), 1123-1132. doi:10.1016/j.mcm.2010.02.027
Salvador, F. J., Hoyas, S., Novella, R., & Martínez-López, J. (2011). Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(4), 545-563. doi:10.1177/09544070jauto1569
Payri, F., Payri, R., Salvador, F. J., & Martínez-López, J. (2012). A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation. Computers & Fluids, 58, 88-101. doi:10.1016/j.compfluid.2012.01.005
Salvador, F. J., Martínez-López, J., Caballer, M., & De Alfonso, C. (2013). Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods. Energy Conversion and Management, 66, 246-256. doi:10.1016/j.enconman.2012.10.011
Salvador, F. J., Martínez-López, J., Romero, J.-V., & Roselló, M.-D. (2013). Computational study of the cavitation phenomenon and its interaction with the turbulence developed in diesel injector nozzles by Large Eddy Simulation (LES). Mathematical and Computer Modelling, 57(7-8), 1656-1662. doi:10.1016/j.mcm.2011.10.050
Piomelli, U. (1999). Large-eddy simulation: achievements and challenges. Progress in Aerospace Sciences, 35(4), 335-362. doi:10.1016/s0376-0421(98)00014-1
Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2
Payri, F., Bermúdez, V., Payri, R., & Salvador, F. J. (2004). The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 83(4-5), 419-431. doi:10.1016/j.fuel.2003.09.010
Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. International Journal of Heat and Fluid Flow, 30(4), 768-777. doi:10.1016/j.ijheatfluidflow.2009.03.011
Martínez López, J. (s. f.). Estudio computacional de la influencia del levantamiento de aguja sobre el flujo interno y el fenómeno de la cavitación en toberas de inyección diésel. doi:10.4995/thesis/10251/29291
Tabor, G. R., & Baba-Ahmadi, M. H. (2010). Inlet conditions for large eddy simulation: A review. Computers & Fluids, 39(4), 553-567. doi:10.1016/j.compfluid.2009.10.007
Payri, R., Gimeno, J., Marti-Aldaravi, P., & Bracho, G. (2013). Study of the influence of the inlet boundary conditions in a LES simulation of internal flow in a diesel injector. Mathematical and Computer Modelling, 57(7-8), 1709-1715. doi:10.1016/j.mcm.2011.11.019
de Villiers E. The potential of large eddy simulation for the modeling of wall bounded flows. PhD Thesis, Imperial College of Science, Technology and Medicine, London, UK, 2006.
Lee, J. W., Min, K. D., Kang, K. Y., Bae, C. S., Giannadakis, E., Gavaises, M., & Arcoumanis, C. (2006). Effect of piezo-driven and solenoid-driven needle opening of common-rail diesel injectors on internal nozzle flow and spray development. International Journal of Engine Research, 7(6), 489-502. doi:10.1243/14680874jer00806
Desantes, J. M., Payri, R., Salvador, F. J., & De la Morena, J. (2010). Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions. Fuel, 89(10), 3033-3041. doi:10.1016/j.fuel.2010.06.004
Lesieur, M., Métais, O., & Comte, P. (2005). Large-Eddy Simulations of Turbulence. doi:10.1017/cbo9780511755507
Sagaut, P. (2001). Large Eddy Simulation for Incompressible Flows. Scientific Computation. doi:10.1007/978-3-662-04416-2
[-]