Adachi, M., Jiu, J., & Isoda, S. (2007). Synthesis of Morphology-Controlled Titania Nanocrystals and Application for Dye-Sensitized Solar Cells. Current Nanoscience, 3(4), 285-295. doi:10.2174/157341307782418577
Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12. doi:10.1016/j.jphotochemrev.2007.12.003
Kitano, M., Tsujimaru, K., & Anpo, M. (2008). Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts. Topics in Catalysis, 49(1-2), 4-17. doi:10.1007/s11244-008-9059-2
[+]
Adachi, M., Jiu, J., & Isoda, S. (2007). Synthesis of Morphology-Controlled Titania Nanocrystals and Application for Dye-Sensitized Solar Cells. Current Nanoscience, 3(4), 285-295. doi:10.2174/157341307782418577
Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12. doi:10.1016/j.jphotochemrev.2007.12.003
Kitano, M., Tsujimaru, K., & Anpo, M. (2008). Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts. Topics in Catalysis, 49(1-2), 4-17. doi:10.1007/s11244-008-9059-2
Lu, J. G., Chang, P., & Fan, Z. (2006). Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Materials Science and Engineering: R: Reports, 52(1-3), 49-91. doi:10.1016/j.mser.2006.04.002
Aprile, C., Corma, A., & Garcia, H. (2008). Enhancement of the photocatalytic activity of TiO2through spatial structuring and particle size control: from subnanometric to submillimetric length scale. Phys. Chem. Chem. Phys., 10(6), 769-783. doi:10.1039/b712168g
SHCHUKIN, D., & SVIRIDOV, D. (2006). Photocatalytic processes in spatially confined micro- and nanoreactors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7(1), 23-39. doi:10.1016/j.jphotochemrev.2006.03.002
Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034
Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248
Müller, M., Hermes, S., Kähler, K., van den Berg, M. W. E., Muhler, M., & Fischer, R. A. (2008). Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chemistry of Materials, 20(14), 4576-4587. doi:10.1021/cm703339h
Hafizovic, J., Bjørgen, M., Olsbye, U., Dietzel, P. D. C., Bordiga, S., Prestipino, C., … Lillerud, K. P. (2007). The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities. Journal of the American Chemical Society, 129(12), 3612-3620. doi:10.1021/ja0675447
Hermes, S., Schröder, F., Amirjalayer, S., Schmid, R., & Fischer, R. A. (2006). Loading of porous metal–organic open frameworks with organometallic CVD precursors: inclusion compounds of the type [LnM]a@MOF-5. J. Mater. Chem., 16(25), 2464-2472. doi:10.1039/b603664c
Hermes, S., Schröter, M.-K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., … Fischer, R. A. (2005). Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie International Edition, 44(38), 6237-6241. doi:10.1002/anie.200462515
Schröder, F., Esken, D., Cokoja, M., van den Berg, M. W. E., Lebedev, O. I., Van Tendeloo, G., … Fischer, R. A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119-6130. doi:10.1021/ja078231u
Fukuda, K., Ebina, Y., Shibata, T., Aizawa, T., Nakai, I., & Sasaki, T. (2007). Unusual Crystallization Behaviors of Anatase Nanocrystallites from a Molecularly Thin Titania Nanosheet and Its Stacked Forms: Increase in Nucleation Temperature and Oriented Growth. Journal of the American Chemical Society, 129(1), 202-209. doi:10.1021/ja0668116
Zhang, H., & Banfield, J. F. (2002). Kinetics of Crystallization and Crystal Growth of Nanocrystalline Anatase in Nanometer-Sized Amorphous Titania. Chemistry of Materials, 14(10), 4145-4154. doi:10.1021/cm020072k
Kavan, L., Stoto, T., Graetzel, M., Fitzmaurice, D., & Shklover, V. (1993). Quantum size effects in nanocrystalline semiconducting titania layers prepared by anodic oxidative hydrolysis of titanium trichloride. The Journal of Physical Chemistry, 97(37), 9493-9498. doi:10.1021/j100139a038
Li, W., Ni, C., Lin, H., Huang, C. P., & Shah, S. I. (2004). Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics, 96(11), 6663-6668. doi:10.1063/1.1807520
Serpone, N., Lawless, D., & Khairutdinov, R. (1995). Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? The Journal of Physical Chemistry, 99(45), 16646-16654. doi:10.1021/j100045a026
Bordiga, S., Lamberti, C., Ricchiardi, G., Regli, L., Bonino, F., Damin, A., … Zecchina, A. (2004). Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chem. Commun., (20), 2300-2301. doi:10.1039/b407246d
Lihitkar, N. B., Abyaneh, M. K., Samuel, V., Pasricha, R., Gosavi, S. W., & Kulkarni, S. K. (2007). Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41. Journal of Colloid and Interface Science, 314(1), 310-316. doi:10.1016/j.jcis.2007.05.069
Parala, H., Devi, A., Bhakta, R., & Fischer, R. A. (2002). Synthesis of nano-scale TiO2 particles by a nonhydrolytic approachElectronic supplementary information (ESI) available: TG analysis of the precursors; particle size distribution analysis of TiO2 nanocrystals dispersed in toluene; XRD analysis of TiO2 nanocrystals with and without glass substrate background. See http://www.rsc.org/suppdata/jm/b2/b202767d/. Journal of Materials Chemistry, 12(6), 1625-1627. doi:10.1039/b202767d
Hikov, T., Schroeter, M.-K., Khodeir, L., Chemseddine, A., Muhler, M., & Fischer, R. A. (2006). Selective photo-deposition of Cu onto the surface of monodisperse oleic acid capped TiO2nanorods probed by FT-IR CO-adsorption studies. Phys. Chem. Chem. Phys., 8(13), 1550-1555. doi:10.1039/b512113b
Uemura, T., Hiramatsu, D., Yoshida, K., Isoda, S., & Kitagawa, S. (2008). Sol−Gel Synthesis of Low-Dimensional Silica within Coordination Nanochannels. Journal of the American Chemical Society, 130(29), 9216-9217. doi:10.1021/ja8030906
Zheng, S., Gao, L., Zhang, Q., Zhang, W., & Guo, J. (2001). Preparation, characterization and photocatalytic properties of singly and doubly titania-modified mesoporous silicate MCM-41 by varying titanium precursors. Journal of Materials Chemistry, 11(2), 578-583. doi:10.1039/b005963n
Gabaldon, J. P., Bore, M., & Datye, A. K. (2007). Mesoporous silica supports for improved thermal stability in supported Au catalysts. Topics in Catalysis, 44(1-2), 253-262. doi:10.1007/s11244-007-0298-4
[-]