- -

Nanometer-sized titania hosted inside MOF-5

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanometer-sized titania hosted inside MOF-5

Mostrar el registro completo del ítem

Müller, M.; Zhang, X.; Wang, Y.; Fischer, RA. (2009). Nanometer-sized titania hosted inside MOF-5. Chemical Communications. (1):119-121. https://doi.org/10.1039/B814241F

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66024

Ficheros en el ítem

Metadatos del ítem

Título: Nanometer-sized titania hosted inside MOF-5
Autor: Müller, Maike Zhang, Xiaoning Wang, Yuemin Fischer, Roland A.
Fecha difusión:
Resumen:
[EN] Nanoscale titania particles were synthesized inside the porous coordination polymer [Zn(4)O(bdc)(3)] (bdc = 1,4-benzene-dicarboxylate, MOF-5) by adsorption of titanium isopropoxide from the gas-phase and subsequent ...[+]
Palabras clave: Metal-organic frameworks , Thermal-Stability , TIO2 particles , Nanoparticles , Precursors , Anatase , Crystallization , Silica , Growth , MCM-41
Derechos de uso: Cerrado
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/B814241F
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/b814241f
Código del Proyecto:
info:eu-repo/grantAgreement/RUB//DFG GSC 98%2F1/
Agradecimientos:
The authors acknowledge support within the Research Centre 558 "Metal Substrate Interactions in Heterogeneous Catalysis" of the German Research Foundation (DFG). The authors wish to thank Todor Hikov for very valuable help ...[+]
Tipo: Artículo

References

Adachi, M., Jiu, J., & Isoda, S. (2007). Synthesis of Morphology-Controlled Titania Nanocrystals and Application for Dye-Sensitized Solar Cells. Current Nanoscience, 3(4), 285-295. doi:10.2174/157341307782418577

Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12. doi:10.1016/j.jphotochemrev.2007.12.003

Kitano, M., Tsujimaru, K., & Anpo, M. (2008). Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts. Topics in Catalysis, 49(1-2), 4-17. doi:10.1007/s11244-008-9059-2 [+]
Adachi, M., Jiu, J., & Isoda, S. (2007). Synthesis of Morphology-Controlled Titania Nanocrystals and Application for Dye-Sensitized Solar Cells. Current Nanoscience, 3(4), 285-295. doi:10.2174/157341307782418577

Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12. doi:10.1016/j.jphotochemrev.2007.12.003

Kitano, M., Tsujimaru, K., & Anpo, M. (2008). Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts. Topics in Catalysis, 49(1-2), 4-17. doi:10.1007/s11244-008-9059-2

Lu, J. G., Chang, P., & Fan, Z. (2006). Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Materials Science and Engineering: R: Reports, 52(1-3), 49-91. doi:10.1016/j.mser.2006.04.002

Aprile, C., Corma, A., & Garcia, H. (2008). Enhancement of the photocatalytic activity of TiO2through spatial structuring and particle size control: from subnanometric to submillimetric length scale. Phys. Chem. Chem. Phys., 10(6), 769-783. doi:10.1039/b712168g

SHCHUKIN, D., & SVIRIDOV, D. (2006). Photocatalytic processes in spatially confined micro- and nanoreactors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7(1), 23-39. doi:10.1016/j.jphotochemrev.2006.03.002

Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034

Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248

Müller, M., Hermes, S., Kähler, K., van den Berg, M. W. E., Muhler, M., & Fischer, R. A. (2008). Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chemistry of Materials, 20(14), 4576-4587. doi:10.1021/cm703339h

Hafizovic, J., Bjørgen, M., Olsbye, U., Dietzel, P. D. C., Bordiga, S., Prestipino, C., … Lillerud, K. P. (2007). The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities. Journal of the American Chemical Society, 129(12), 3612-3620. doi:10.1021/ja0675447

Hermes, S., Schröder, F., Amirjalayer, S., Schmid, R., & Fischer, R. A. (2006). Loading of porous metal–organic open frameworks with organometallic CVD precursors: inclusion compounds of the type [LnM]a@MOF-5. J. Mater. Chem., 16(25), 2464-2472. doi:10.1039/b603664c

Hermes, S., Schröter, M.-K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., … Fischer, R. A. (2005). Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie International Edition, 44(38), 6237-6241. doi:10.1002/anie.200462515

Schröder, F., Esken, D., Cokoja, M., van den Berg, M. W. E., Lebedev, O. I., Van Tendeloo, G., … Fischer, R. A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119-6130. doi:10.1021/ja078231u

Fukuda, K., Ebina, Y., Shibata, T., Aizawa, T., Nakai, I., & Sasaki, T. (2007). Unusual Crystallization Behaviors of Anatase Nanocrystallites from a Molecularly Thin Titania Nanosheet and Its Stacked Forms:  Increase in Nucleation Temperature and Oriented Growth. Journal of the American Chemical Society, 129(1), 202-209. doi:10.1021/ja0668116

Zhang, H., & Banfield, J. F. (2002). Kinetics of Crystallization and Crystal Growth of Nanocrystalline Anatase in Nanometer-Sized Amorphous Titania. Chemistry of Materials, 14(10), 4145-4154. doi:10.1021/cm020072k

Kavan, L., Stoto, T., Graetzel, M., Fitzmaurice, D., & Shklover, V. (1993). Quantum size effects in nanocrystalline semiconducting titania layers prepared by anodic oxidative hydrolysis of titanium trichloride. The Journal of Physical Chemistry, 97(37), 9493-9498. doi:10.1021/j100139a038

Li, W., Ni, C., Lin, H., Huang, C. P., & Shah, S. I. (2004). Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics, 96(11), 6663-6668. doi:10.1063/1.1807520

Serpone, N., Lawless, D., & Khairutdinov, R. (1995). Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? The Journal of Physical Chemistry, 99(45), 16646-16654. doi:10.1021/j100045a026

Bordiga, S., Lamberti, C., Ricchiardi, G., Regli, L., Bonino, F., Damin, A., … Zecchina, A. (2004). Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chem. Commun., (20), 2300-2301. doi:10.1039/b407246d

Lihitkar, N. B., Abyaneh, M. K., Samuel, V., Pasricha, R., Gosavi, S. W., & Kulkarni, S. K. (2007). Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41. Journal of Colloid and Interface Science, 314(1), 310-316. doi:10.1016/j.jcis.2007.05.069

Parala, H., Devi, A., Bhakta, R., & Fischer, R. A. (2002). Synthesis of nano-scale TiO2 particles by a nonhydrolytic approachElectronic supplementary information (ESI) available: TG analysis of the precursors; particle size distribution analysis of TiO2 nanocrystals dispersed in toluene; XRD analysis of TiO2 nanocrystals with and without glass substrate background. See http://www.rsc.org/suppdata/jm/b2/b202767d/. Journal of Materials Chemistry, 12(6), 1625-1627. doi:10.1039/b202767d

Hikov, T., Schroeter, M.-K., Khodeir, L., Chemseddine, A., Muhler, M., & Fischer, R. A. (2006). Selective photo-deposition of Cu onto the surface of monodisperse oleic acid capped TiO2nanorods probed by FT-IR CO-adsorption studies. Phys. Chem. Chem. Phys., 8(13), 1550-1555. doi:10.1039/b512113b

Uemura, T., Hiramatsu, D., Yoshida, K., Isoda, S., & Kitagawa, S. (2008). Sol−Gel Synthesis of Low-Dimensional Silica within Coordination Nanochannels. Journal of the American Chemical Society, 130(29), 9216-9217. doi:10.1021/ja8030906

Zheng, S., Gao, L., Zhang, Q., Zhang, W., & Guo, J. (2001). Preparation, characterization and photocatalytic properties of singly and doubly titania-modified mesoporous silicate MCM-41 by varying titanium precursors. Journal of Materials Chemistry, 11(2), 578-583. doi:10.1039/b005963n

Gabaldon, J. P., Bore, M., & Datye, A. K. (2007). Mesoporous silica supports for improved thermal stability in supported Au catalysts. Topics in Catalysis, 44(1-2), 253-262. doi:10.1007/s11244-007-0298-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem