- -

Nanometer-sized titania hosted inside MOF-5

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Nanometer-sized titania hosted inside MOF-5

Show simple item record

Files in this item

dc.contributor.author Müller, Maike es_ES
dc.contributor.author Zhang, Xiaoning es_ES
dc.contributor.author Wang, Yuemin es_ES
dc.contributor.author Fischer, Roland A. es_ES
dc.date.accessioned 2016-06-16T11:23:02Z
dc.date.available 2016-06-16T11:23:02Z
dc.date.issued 2009
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/66024
dc.description.abstract [EN] Nanoscale titania particles were synthesized inside the porous coordination polymer [Zn(4)O(bdc)(3)] (bdc = 1,4-benzene-dicarboxylate, MOF-5) by adsorption of titanium isopropoxide from the gas-phase and subsequent dry oxidation and annealing. es_ES
dc.description.sponsorship The authors acknowledge support within the Research Centre 558 "Metal Substrate Interactions in Heterogeneous Catalysis" of the German Research Foundation (DFG). The authors wish to thank Todor Hikov for very valuable help with UV-Vis and PL measurements. M. M. is grateful to the Ruhr-University Research School [DFG GSC 98/1] for supporting her doctoral thesis and to the Evangelische Studienwerk e. V. Villigst for a stipend.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metal-organic frameworks es_ES
dc.subject Thermal-Stability es_ES
dc.subject TIO2 particles es_ES
dc.subject Nanoparticles es_ES
dc.subject Precursors es_ES
dc.subject Anatase es_ES
dc.subject Crystallization es_ES
dc.subject Silica es_ES
dc.subject Growth es_ES
dc.subject MCM-41 es_ES
dc.title Nanometer-sized titania hosted inside MOF-5 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/B814241F
dc.relation.projectID info:eu-repo/grantAgreement/RUB//DFG GSC 98%2F1/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Müller, M.; Zhang, X.; Wang, Y.; Fischer, RA. (2009). Nanometer-sized titania hosted inside MOF-5. Chemical Communications. (1):119-121. https://doi.org/10.1039/B814241F es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/b814241f es_ES
dc.description.upvformatpinicio 119 es_ES
dc.description.upvformatpfin 121 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 1 es_ES
dc.relation.senia 209025 es_ES
dc.identifier.pmid 19082018
dc.contributor.funder Ruhr University Bochum, Alemania
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.description.references Adachi, M., Jiu, J., & Isoda, S. (2007). Synthesis of Morphology-Controlled Titania Nanocrystals and Application for Dye-Sensitized Solar Cells. Current Nanoscience, 3(4), 285-295. doi:10.2174/157341307782418577 es_ES
dc.description.references Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12. doi:10.1016/j.jphotochemrev.2007.12.003 es_ES
dc.description.references Kitano, M., Tsujimaru, K., & Anpo, M. (2008). Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts. Topics in Catalysis, 49(1-2), 4-17. doi:10.1007/s11244-008-9059-2 es_ES
dc.description.references Lu, J. G., Chang, P., & Fan, Z. (2006). Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Materials Science and Engineering: R: Reports, 52(1-3), 49-91. doi:10.1016/j.mser.2006.04.002 es_ES
dc.description.references Aprile, C., Corma, A., & Garcia, H. (2008). Enhancement of the photocatalytic activity of TiO2through spatial structuring and particle size control: from subnanometric to submillimetric length scale. Phys. Chem. Chem. Phys., 10(6), 769-783. doi:10.1039/b712168g es_ES
dc.description.references SHCHUKIN, D., & SVIRIDOV, D. (2006). Photocatalytic processes in spatially confined micro- and nanoreactors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7(1), 23-39. doi:10.1016/j.jphotochemrev.2006.03.002 es_ES
dc.description.references Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034 es_ES
dc.description.references Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 es_ES
dc.description.references Müller, M., Hermes, S., Kähler, K., van den Berg, M. W. E., Muhler, M., & Fischer, R. A. (2008). Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chemistry of Materials, 20(14), 4576-4587. doi:10.1021/cm703339h es_ES
dc.description.references Hafizovic, J., Bjørgen, M., Olsbye, U., Dietzel, P. D. C., Bordiga, S., Prestipino, C., … Lillerud, K. P. (2007). The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities. Journal of the American Chemical Society, 129(12), 3612-3620. doi:10.1021/ja0675447 es_ES
dc.description.references Hermes, S., Schröder, F., Amirjalayer, S., Schmid, R., & Fischer, R. A. (2006). Loading of porous metal–organic open frameworks with organometallic CVD precursors: inclusion compounds of the type [LnM]a@MOF-5. J. Mater. Chem., 16(25), 2464-2472. doi:10.1039/b603664c es_ES
dc.description.references Hermes, S., Schröter, M.-K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., … Fischer, R. A. (2005). Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie International Edition, 44(38), 6237-6241. doi:10.1002/anie.200462515 es_ES
dc.description.references Schröder, F., Esken, D., Cokoja, M., van den Berg, M. W. E., Lebedev, O. I., Van Tendeloo, G., … Fischer, R. A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119-6130. doi:10.1021/ja078231u es_ES
dc.description.references Fukuda, K., Ebina, Y., Shibata, T., Aizawa, T., Nakai, I., & Sasaki, T. (2007). Unusual Crystallization Behaviors of Anatase Nanocrystallites from a Molecularly Thin Titania Nanosheet and Its Stacked Forms:  Increase in Nucleation Temperature and Oriented Growth. Journal of the American Chemical Society, 129(1), 202-209. doi:10.1021/ja0668116 es_ES
dc.description.references Zhang, H., & Banfield, J. F. (2002). Kinetics of Crystallization and Crystal Growth of Nanocrystalline Anatase in Nanometer-Sized Amorphous Titania. Chemistry of Materials, 14(10), 4145-4154. doi:10.1021/cm020072k es_ES
dc.description.references Kavan, L., Stoto, T., Graetzel, M., Fitzmaurice, D., & Shklover, V. (1993). Quantum size effects in nanocrystalline semiconducting titania layers prepared by anodic oxidative hydrolysis of titanium trichloride. The Journal of Physical Chemistry, 97(37), 9493-9498. doi:10.1021/j100139a038 es_ES
dc.description.references Li, W., Ni, C., Lin, H., Huang, C. P., & Shah, S. I. (2004). Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics, 96(11), 6663-6668. doi:10.1063/1.1807520 es_ES
dc.description.references Serpone, N., Lawless, D., & Khairutdinov, R. (1995). Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? The Journal of Physical Chemistry, 99(45), 16646-16654. doi:10.1021/j100045a026 es_ES
dc.description.references Bordiga, S., Lamberti, C., Ricchiardi, G., Regli, L., Bonino, F., Damin, A., … Zecchina, A. (2004). Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chem. Commun., (20), 2300-2301. doi:10.1039/b407246d es_ES
dc.description.references Lihitkar, N. B., Abyaneh, M. K., Samuel, V., Pasricha, R., Gosavi, S. W., & Kulkarni, S. K. (2007). Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41. Journal of Colloid and Interface Science, 314(1), 310-316. doi:10.1016/j.jcis.2007.05.069 es_ES
dc.description.references Parala, H., Devi, A., Bhakta, R., & Fischer, R. A. (2002). Synthesis of nano-scale TiO2 particles by a nonhydrolytic approachElectronic supplementary information (ESI) available: TG analysis of the precursors; particle size distribution analysis of TiO2 nanocrystals dispersed in toluene; XRD analysis of TiO2 nanocrystals with and without glass substrate background. See http://www.rsc.org/suppdata/jm/b2/b202767d/. Journal of Materials Chemistry, 12(6), 1625-1627. doi:10.1039/b202767d es_ES
dc.description.references Hikov, T., Schroeter, M.-K., Khodeir, L., Chemseddine, A., Muhler, M., & Fischer, R. A. (2006). Selective photo-deposition of Cu onto the surface of monodisperse oleic acid capped TiO2nanorods probed by FT-IR CO-adsorption studies. Phys. Chem. Chem. Phys., 8(13), 1550-1555. doi:10.1039/b512113b es_ES
dc.description.references Uemura, T., Hiramatsu, D., Yoshida, K., Isoda, S., & Kitagawa, S. (2008). Sol−Gel Synthesis of Low-Dimensional Silica within Coordination Nanochannels. Journal of the American Chemical Society, 130(29), 9216-9217. doi:10.1021/ja8030906 es_ES
dc.description.references Zheng, S., Gao, L., Zhang, Q., Zhang, W., & Guo, J. (2001). Preparation, characterization and photocatalytic properties of singly and doubly titania-modified mesoporous silicate MCM-41 by varying titanium precursors. Journal of Materials Chemistry, 11(2), 578-583. doi:10.1039/b005963n es_ES
dc.description.references Gabaldon, J. P., Bore, M., & Datye, A. K. (2007). Mesoporous silica supports for improved thermal stability in supported Au catalysts. Topics in Catalysis, 44(1-2), 253-262. doi:10.1007/s11244-007-0298-4 es_ES


This item appears in the following Collection(s)

Show simple item record