- -

Determination of oxygenated compounds in secondary organic aerosol from isoprene and toluene smog chamber experiments

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Determination of oxygenated compounds in secondary organic aerosol from isoprene and toluene smog chamber experiments

Show simple item record

Files in this item

dc.contributor.author Borrás García, Esther Mª es_ES
dc.contributor.author Tortajada-Genaro, Luis Antonio es_ES
dc.date.accessioned 2016-06-17T10:47:36Z
dc.date.available 2016-06-17T10:47:36Z
dc.date.issued 2012
dc.identifier.issn 0306-7319
dc.identifier.uri http://hdl.handle.net/10251/66088
dc.description.abstract [EN] The determination of multifunctional oxygenated compounds in secondary organic aerosols (SOA) usually requires a derivatisation protocol prior to gas chromatography-mass spectrometry analysis (GC-MS). Our proposed protocol, a combination of O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) plus diluted N-methyl-N-trimethyl-silyltrifluoroacetamide (MSTFA) without catalyst, has improved the determination of carbonyls, polyhydroxyl-compounds, hydroxyl- carbonyls, hydroxyl-carboxylic acids and di-carboxylic acids. The optimised derivatisation protocol has been successfully used for blanks, standard mixtures and photo-oxidation products from isoprene and toluene generated in a high-volume simulation chamber (European Photoreactor, EUPHORE). Some previously identified degradation products for isoprene including tetrols such as threitol, erythritol; 2-methyltetrols and 2-methylglyceric acid; and for toluene including nitrophenols, methyl-nitrophenols, benzaldehyde, p-cresol, benzoic acid, glyoxylic acid and methyl-glyoxylic acid, have been identified in our aerosol samples, thus confirming the successful applicability of the proposed derivatisation protocol. Moreover, the reduction of artefacts and enhanced signal-to-noise ratio, have allowed us to extend the number of multifunctional compounds determined. These findings have demonstrated the validity of this analytical strategy, which will contribute to a better understanding of the atmospheric degradation chemistry of biogenic and anthropogenic pollutants. © 2012 Taylor & Francis. es_ES
dc.description.sponsorship We gratefully acknowledge the Generalitat Valenciana, Fundacion Bancaja and the GRACCIE CBS2007-00067 project in the CONSOLIDER-INGENIO 2010 program for supporting this study. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation Generalitat Valenciana es_ES
dc.relation Fundacion Bancaja es_ES
dc.relation GRACCIE [CBS2007-00067] es_ES
dc.relation.ispartof International Journal of Environmental Analytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Isoprene es_ES
dc.subject MSTFA es_ES
dc.subject PFBHA es_ES
dc.subject Secondary organic aerosol es_ES
dc.subject Toluene es_ES
dc.subject 2-methylglyceric acid es_ES
dc.subject Aerosol samples es_ES
dc.subject Analytical strategy es_ES
dc.subject Anthropogenic pollutants es_ES
dc.subject Atmospheric degradation es_ES
dc.subject Benzoic acid es_ES
dc.subject Degradation products es_ES
dc.subject Derivatisation es_ES
dc.subject Gas chromatography-mass spectrometry es_ES
dc.subject Glyoxylic acids es_ES
dc.subject Multifunctional compounds es_ES
dc.subject Nitrophenols es_ES
dc.subject Oxygenated compounds es_ES
dc.subject P-cresol es_ES
dc.subject Photoreactors es_ES
dc.subject Secondary organic aerosols es_ES
dc.subject Signal to noise es_ES
dc.subject Simulation chambers es_ES
dc.subject Smog chambers es_ES
dc.subject Aldehydes es_ES
dc.subject Atmospheric aerosols es_ES
dc.subject Atmospheric chemistry es_ES
dc.subject Carboxylic acids es_ES
dc.subject Chemical analysis es_ES
dc.subject Degradation es_ES
dc.subject Gas chromatography es_ES
dc.subject Mass spectrometry es_ES
dc.subject Phenols es_ES
dc.subject Signal to noise ratio es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Determination of oxygenated compounds in secondary organic aerosol from isoprene and toluene smog chamber experiments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/03067319.2011.572164
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Borrás García, EM.; Tortajada-Genaro, LA. (2012). Determination of oxygenated compounds in secondary organic aerosol from isoprene and toluene smog chamber experiments. International Journal of Environmental Analytical Chemistry. 92(1):110-124. doi:10.1080/03067319.2011.572164 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1080/03067319.2011.572164 es_ES
dc.description.upvformatpinicio 110 es_ES
dc.description.upvformatpfin 124 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 92 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 213179 es_ES
dc.identifier.eissn 1029-0397
dc.relation.references Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., … Wildt, J. (2009). The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 9(14), 5155-5236. doi:10.5194/acp-9-5155-2009 es_ES
dc.relation.references Yu, J., Jeffries, H. E., & Le Lacheur, R. M. (1995). Identifying Airborne Carbonyl Compounds in Isoprene Atmospheric Photooxidation Products by Their PFBHA Oximes Using Gas Chromatography/Ion Trap Mass Spectrometry. Environmental Science & Technology, 29(8), 1923-1932. doi:10.1021/es00008a009 es_ES
dc.relation.references Yu, J., Flagan, R. C., & Seinfeld, J. H. (1998). Identification of Products Containing −COOH, −OH, and −CO in Atmospheric Oxidation of Hydrocarbons. Environmental Science & Technology, 32(16), 2357-2370. doi:10.1021/es980129x es_ES
dc.relation.references Spaulding, R., & Charles, M. (2002). Comparison of methods for extraction, storage, and silylation of pentafluorobenzyl derivatives of carbonyl compounds and multi-functional carbonyl compounds. Analytical and Bioanalytical Chemistry, 372(7-8), 808-816. doi:10.1007/s00216-002-1252-8 es_ES
dc.relation.references Edler, M., Metze, D., Jakubowski, N., & Linscheid, M. (2002). Quantification of silylated organic compounds using gas chromatography coupled to ICP-MS. Journal of Analytical Atomic Spectrometry, 17(10), 1209-1212. doi:10.1039/b207227k es_ES
dc.relation.references Jaoui, M., Kleindienst, T. E., Lewandowski, M., & Edney, E. O. (2004). Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic or Hydroxyl Groups. 1. Method Development. Analytical Chemistry, 76(16), 4765-4778. doi:10.1021/ac049919h es_ES
dc.relation.references Wang, W., Vas, G., Dommisse, R., Loones, K., & Claeys, M. (2004). Fragmentation study of diastereoisomeric 2-methyltetrols, oxidation products of isoprene, as their trimethylsilyl ethers, using gas chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 18(16), 1787-1797. doi:10.1002/rcm.1553 es_ES
dc.relation.references Claeys, M., Wang, W., Ion, A. C., Kourtchev, I., Gelencsér, A., & Maenhaut, W. (2004). Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmospheric Environment, 38(25), 4093-4098. doi:10.1016/j.atmosenv.2004.06.001 es_ES
dc.relation.references Szmigielski, R., Surratt, J. D., Vermeylen, R., Szmigielska, K., Kroll, J. H., Ng, N. L., … Claeys, M. (2007). Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formed from the photooxidation of isoprene using trimethylsilylation and gas chromatography/ion trap mass spectrometry. Journal of Mass Spectrometry, 42(1), 101-116. doi:10.1002/jms.1146 es_ES
dc.relation.references Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., … Seinfeld, J. H. (2006). Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene. The Journal of Physical Chemistry A, 110(31), 9665-9690. doi:10.1021/jp061734m es_ES
dc.relation.references Ortiz, R., Enya, K., Sekiguchi, K., & Sakamoto, K. (2009). Experimental testing of an annular denuder and filter system to measure gas–particle partitioning of semivolatile bifunctional carbonyls in the atmosphere. Atmospheric Environment, 43(2), 382-388. doi:10.1016/j.atmosenv.2008.09.074 es_ES
dc.relation.references Healy, R. M., Wenger, J. C., Metzger, A., Duplissy, J., Kalberer, M., & Dommen, J. (2008). Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene. Atmospheric Chemistry and Physics, 8(12), 3215-3230. doi:10.5194/acp-8-3215-2008 es_ES
dc.relation.references Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Jaoui, M., & Edney, E. O. (2009). The formation of secondary organic aerosol from the isoprene + OH reaction in the absence of NOx. Atmospheric Chemistry and Physics, 9(17), 6541-6558. doi:10.5194/acp-9-6541-2009 es_ES
dc.relation.references Forstner, H. J. L., Flagan, R. C., & Seinfeld, J. H. (1997). Secondary Organic Aerosol from the Photooxidation of Aromatic Hydrocarbons:  Molecular Composition. Environmental Science & Technology, 31(5), 1345-1358. doi:10.1021/es9605376 es_ES
dc.relation.references (s. f.). doi:10.1021/es010676 es_ES
dc.relation.references Kleindienst, T. E., Conver, T. S., McIver, C. D., & Edney, E. O. (2004). Determination of Secondary Organic Aerosol Products from the Photooxidation of Toluene and their Implications in Ambient PM2.5. Journal of Atmospheric Chemistry, 47(1), 79-100. doi:10.1023/b:joch.0000012305.94498.28 es_ES
dc.relation.references HAMILTON, J., WEBB, P., LEWIS, A., & REVIEJO, M. (2005). Quantifying small molecules in secondary organic aerosol formed during the photo-oxidation of toluene with hydroxyl radicals. Atmospheric Environment, 39(38), 7263-7275. doi:10.1016/j.atmosenv.2005.09.006 es_ES
dc.relation.references Orzechowska, G. E., Nguyen, H. T., & Paulson, S. E. (2005). Photochemical Sources of Organic Acids. 2. Formation of C5−C9Carboxylic Acids from Alkene Ozonolysis under Dry and Humid Conditions. The Journal of Physical Chemistry A, 109(24), 5366-5375. doi:10.1021/jp050167k es_ES
dc.relation.references Claeys, M., Szmigielski, R., Kourtchev, I., Van der Veken, P., Vermeylen, R., Maenhaut, W., … Edney, E. O. (2007). Hydroxydicarboxylic Acids:  Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene. Environmental Science & Technology, 41(5), 1628-1634. doi:10.1021/es0620181 es_ES
dc.relation.references Claeys, M. (2004). Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene. Science, 303(5661), 1173-1176. doi:10.1126/science.1092805 es_ES
dc.relation.references Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., & Edney, E. O. (2005). Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic or Hydroxyl Groups. 2. Organic Tracer Compounds from Monoterpenes. Environmental Science & Technology, 39(15), 5661-5673. doi:10.1021/es048111b es_ES
dc.relation.references Böge, O., Miao, Y., Plewka, A., & Herrmann, H. (2006). Formation of secondary organic particle phase compounds from isoprene gas-phase oxidation products: An aerosol chamber and field study. Atmospheric Environment, 40(14), 2501-2509. doi:10.1016/j.atmosenv.2005.12.025 es_ES
dc.relation.references Kourtchev, I., Warnke, J., Maenhaut, W., Hoffmann, T., & Claeys, M. (2008). Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. Chemosphere, 73(8), 1308-1314. doi:10.1016/j.chemosphere.2008.07.011 es_ES
dc.relation.references Pio, C., Alves, C., & Duarte, A. (2001). Organic components of aerosols in a forested area of central Greece. Atmospheric Environment, 35(2), 389-401. doi:10.1016/s1352-2310(00)00135-7 es_ES
dc.relation.references Little, J. L. (1999). Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. Journal of Chromatography A, 844(1-2), 1-22. doi:10.1016/s0021-9673(99)00267-8 es_ES
dc.relation.references Ruppert, L., & Heinz Becker, K. (2000). A product study of the OH radical-initiated oxidation of isoprene: formation of C5-unsaturated diols. Atmospheric Environment, 34(10), 1529-1542. doi:10.1016/s1352-2310(99)00408-2 es_ES
dc.relation.references Martín-Reviejo, M., & Wirtz, K. (2005). Is Benzene a Precursor for Secondary Organic Aerosol? Environmental Science & Technology, 39(4), 1045-1054. doi:10.1021/es049802a es_ES
dc.relation.references Volkamer, R., Klotz, B., Barnes, I., Imamura, T., Wirtz, K., Washida, N., … Platt, U. (2002). OH-initiated oxidation of benzene. Physical Chemistry Chemical Physics, 4(9), 1598-1610. doi:10.1039/b108747a es_ES
dc.relation.references Hurley, M. D., Sokolov, O., Wallington, T. J., Takekawa, H., Karasawa, M., Klotz, B., … Becker, K. H. (2001). Organic Aerosol Formation during the Atmospheric Degradation of Toluene. Environmental Science & Technology, 35(7), 1358-1366. doi:10.1021/es0013733 es_ES
dc.relation.references Paulsen, D., Dommen, J., Kalberer, M., Prévôt, A. S. H., Richter, R., Sax, M., … Baltensperger, U. (2005). Secondary Organic Aerosol Formation by Irradiation of 1,3,5-Trimethylbenzene−NOx−H2O in a New Reaction Chamber for Atmospheric Chemistry and Physics. Environmental Science & Technology, 39(8), 2668-2678. doi:10.1021/es0489137 es_ES
dc.relation.references Baltensperger, U., Kalberer, M., Dommen, J., Paulsen, D., Alfarra, M. R., Coe, H., … Zenobi, R. (2005). Secondary organic aerosols from anthropogenic and biogenic precursors. Faraday Discussions, 130, 265. doi:10.1039/b417367h es_ES
dc.relation.references McMurry, P. H., & Rader, D. J. (1985). Aerosol Wall Losses in Electrically Charged Chambers. Aerosol Science and Technology, 4(3), 249-268. doi:10.1080/02786828508959054 es_ES
dc.relation.references Halket, J. M., & Zaikin, V. G. (2003). Derivatization in Mass Spectrometry—1. Silylation. European Journal of Mass Spectrometry, 9(1), 1-21. doi:10.1255/ejms.527 es_ES
dc.relation.references Clements, A. L., & Seinfeld, J. H. (2007). Detection and quantification of 2-methyltetrols in ambient aerosol in the southeastern United States. Atmospheric Environment, 41(9), 1825-1830. doi:10.1016/j.atmosenv.2006.10.056 es_ES
dc.relation.references Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., & Simoneit, B. R. T. (1993). Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation. Atmospheric Environment. Part A. General Topics, 27(8), 1309-1330. doi:10.1016/0960-1686(93)90257-y es_ES
dc.relation.references Edney, E. O., Driscoll, D. J., Weathers, W. S., Kleindienst, T. E., Conver, T. S., McIver, C. D., & Li, W. (2001). Formation of Polyketones in Irradiated Toluene/Propylene/NO x /Air Mixtures. Aerosol Science and Technology, 35(6), 998-1008. doi:10.1080/027868201753306769 es_ES
dc.relation.references Temime, B., Healy, R. M., & Wenger, J. C. (2007). A Denuder-Filter Sampling Technique for the Detection of Gas and Particle Phase Carbonyl Compounds. Environmental Science & Technology, 41(18), 6514-6520. doi:10.1021/es070802v es_ES


This item appears in the following Collection(s)

Show simple item record