Teissier, B. (2012). Some Resonances of Łojasiewicz Inequalities. Wiadomości Matematyczne, 48(2). doi:10.14708/wm.v48i2.337
Rojas, J. M., & Wang, X. (1996). Counting Affine Roots of Polynomial Systems via Pointed Newton Polytopes. Journal of Complexity, 12(2), 116-133. doi:10.1006/jcom.1996.0009
Rees, D. (1988). Lectures on the Asymptotic Theory of Ideals. doi:10.1017/cbo9780511525957
[+]
Teissier, B. (2012). Some Resonances of Łojasiewicz Inequalities. Wiadomości Matematyczne, 48(2). doi:10.14708/wm.v48i2.337
Rojas, J. M., & Wang, X. (1996). Counting Affine Roots of Polynomial Systems via Pointed Newton Polytopes. Journal of Complexity, 12(2), 116-133. doi:10.1006/jcom.1996.0009
Rees, D. (1988). Lectures on the Asymptotic Theory of Ideals. doi:10.1017/cbo9780511525957
Rees, D. (1956). Valuations Associated with a Local Ring (II). Journal of the London Mathematical Society, s1-31(2), 228-235. doi:10.1112/jlms/s1-31.2.228
Howald, J. A. (2001). Transactions of the American Mathematical Society, 353(07), 2665-2672. doi:10.1090/s0002-9947-01-02720-9
Hickel, M. (2010). Fonction asymptotique de Samuel des sections hyperplanes et multiplicité. Journal of Pure and Applied Algebra, 214(5), 634-645. doi:10.1016/j.jpaa.2009.07.015
De Fernex, T., Ein, L., & Mustaţǎ, M. (2004). Multiplicities and log canonical threshold. Journal of Algebraic Geometry, 13(3), 603-615. doi:10.1090/s1056-3911-04-00346-7
Bivià-Ausina, C. (2008). Local Łojasiewicz exponents, Milnor numbers and mixed multiplicities of ideals. Mathematische Zeitschrift, 262(2), 389-409. doi:10.1007/s00209-008-0380-z
Bivià-Ausina, C. (2008). Joint reductions of monomial ideals and multiplicity of complex analytic maps. Mathematical Research Letters, 15(2), 389-407. doi:10.4310/mrl.2008.v15.n2.a15
Rojas, J. M. (1994). A convex geometric approach to counting the roots of a polynomial system. Theoretical Computer Science, 133(1), 105-140. doi:10.1016/0304-3975(93)00062-a
[6] C. Bivià-Ausina and T. Fukui , ‘Mixed Łojasiewicz exponents, log canonical thresholds of ideals and bi-Lipschitz equivalence’, Preprint, 2014, arXiv:1405.2110 [math.AG].
Ewald, G. (1996). Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics. doi:10.1007/978-1-4612-4044-0
Lejeune-Jalabert, M., & Teissier, B. (2008). Clôture intégrale des idéaux et équisingularité. Annales de la faculté des sciences de Toulouse Mathématiques, 17(4), 781-859. doi:10.5802/afst.1203
Bivià-Ausina, C., & Encinas, S. (2012). Łojasiewicz exponent of families of ideals, Rees mixed multiplicities and Newton filtrations. Revista Matemática Complutense, 26(2), 773-798. doi:10.1007/s13163-012-0104-0
Rees, D. (1984). Generalizations of Reductions and Mixed Multiplicities. Journal of the London Mathematical Society, s2-29(3), 397-414. doi:10.1112/jlms/s2-29.3.397
Biviá-Ausina, C. (2004). Nondegenerate Ideals in Formal Power Series Rings. Rocky Mountain Journal of Mathematics, 34(2), 495-511. doi:10.1216/rmjm/1181069864
Bivià-Ausina, C. (2005). JACOBIAN IDEALS AND THE NEWTON NON-DEGENERACY CONDITION. Proceedings of the Edinburgh Mathematical Society, 48(1), 21-36. doi:10.1017/s0013091504000173
Li, T. Y., & Wang, X. (1996). The BKK root count in $\mathbf{C}^n$. Mathematics of Computation, 65(216), 1477-1485. doi:10.1090/s0025-5718-96-00778-8
[-]