- -

In silico assessment of drug safety in human heart applied to late sodium current blockers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In silico assessment of drug safety in human heart applied to late sodium current blockers

Mostrar el registro completo del ítem

Trénor Gomis, BA.; Gomis-Tena Dolz, J.; Cardona Urrego, KE.; Romero Pérez, L.; Rajamani, S.; Belardinelli, L.; Giles, WR.... (2013). In silico assessment of drug safety in human heart applied to late sodium current blockers. Channels. 7(4):1-14. https://doi.org/10.4161/chan.24905

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67665

Ficheros en el ítem

Metadatos del ítem

Título: In silico assessment of drug safety in human heart applied to late sodium current blockers
Autor: Trénor Gomis, Beatriz Ana Gomis-Tena Dolz, Julio Cardona Urrego, Karen Eliana Romero Pérez, Lucia Rajamani, Sridharan Belardinelli, Luiz Giles, Wayne R. Saiz Rodríguez, Francisco Javier
Entidad UPV: Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
Drug-induced action potential (AP) prolongation leading to Torsade de Pointes is a major concern for the development of anti-arrhythmic drugs. Nevertheless the development of improved anti-arrhythmic agents, some of which ...[+]
Palabras clave: Anti-arrhythmic , Drug safety , Multi-channel block , Reverse rate-dependence , Late sodium current , Transmural dispersion of repolarization
Derechos de uso: Reserva de todos los derechos
Fuente:
Channels. (issn: 1933-6950 ) (eissn: 1933-6969 )
DOI: 10.4161/chan.24905
Editorial:
Landes Bioscience
Versión del editor: http://dx.doi.org/10.4161/chan.24905
Código del Proyecto:
info:eu-repo/grantAgreement/MITURCO//TSI-020100-2010-0469/ES/LocMoTIC. Localización del Origen de Arritmias Cardíacas Mediante Modelado y Tecnologías de la Información y Comunicaciones/
info:eu-repo/grantAgreement/UPV//PAID-06-11-2002/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F030/ES/MEJORA EN LA PREVENCION Y TRATAMIENTO DE PATOLOGIAS CARDIACAS A TRAVES DE LA MODELIZACION MULTI-ESCALA Y LA SIMULACION COMPUTACIONAL (DIGITAL HEART)/
Agradecimientos:
This work was supported by (1) Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica, (2) Plan Avanza en el marco de la Accion Estrategica de Telecomunicaciones y Sociedad de la Informacion del ...[+]
Tipo: Artículo

References

Maltsev, V. A., Silverman, N., Sabbah, H. N., & Undrovinas, A. I. (2007). Chronic heart failure slows late sodium current in human and canine ventricular myocytes: Implications for repolarization variability. European Journal of Heart Failure, 9(3), 219-227. doi:10.1016/j.ejheart.2006.08.007

Zaza, A., Belardinelli, L., & Shryock, J. C. (2008). Pathophysiology and pharmacology of the cardiac «late sodium current». Pharmacology & Therapeutics, 119(3), 326-339. doi:10.1016/j.pharmthera.2008.06.001

Song, Y., Shryock, J. C., Wagner, S., Maier, L. S., & Belardinelli, L. (2006). Blocking Late Sodium Current Reduces Hydrogen Peroxide-Induced Arrhythmogenic Activity and Contractile Dysfunction. Journal of Pharmacology and Experimental Therapeutics, 318(1), 214-222. doi:10.1124/jpet.106.101832 [+]
Maltsev, V. A., Silverman, N., Sabbah, H. N., & Undrovinas, A. I. (2007). Chronic heart failure slows late sodium current in human and canine ventricular myocytes: Implications for repolarization variability. European Journal of Heart Failure, 9(3), 219-227. doi:10.1016/j.ejheart.2006.08.007

Zaza, A., Belardinelli, L., & Shryock, J. C. (2008). Pathophysiology and pharmacology of the cardiac «late sodium current». Pharmacology & Therapeutics, 119(3), 326-339. doi:10.1016/j.pharmthera.2008.06.001

Song, Y., Shryock, J. C., Wagner, S., Maier, L. S., & Belardinelli, L. (2006). Blocking Late Sodium Current Reduces Hydrogen Peroxide-Induced Arrhythmogenic Activity and Contractile Dysfunction. Journal of Pharmacology and Experimental Therapeutics, 318(1), 214-222. doi:10.1124/jpet.106.101832

Milberg, P., Pott, C., Fink, M., Frommeyer, G., Matsuda, T., Baba, A., … Eckardt, L. (2008). Inhibition of the Na+/Ca2+ exchanger suppresses torsades de pointes in an intact heart model of long QT syndrome-2 and long QT syndrome-3. Heart Rhythm, 5(10), 1444-1452. doi:10.1016/j.hrthm.2008.06.017

Jia, S., Lian, J., Guo, D., Xue, X., Patel, C., Yang, L., … Yan, G.-X. (2011). Modulation of the late sodium current by ATX-II and ranolazine affects the reverse use-dependence and proarrhythmic liability of IKrblockade. British Journal of Pharmacology, 164(2), 308-316. doi:10.1111/j.1476-5381.2010.01181.x

UNDROVINAS, A. I., BELARDINELLI, L., UNDROVINAS, N. A., & SABBAH, H. N. (2006). Ranolazine Improves Abnormal Repolarization and Contraction in Left Ventricular Myocytes of Dogs with Heart Failure by Inhibiting Late Sodium Current. Journal of Cardiovascular Electrophysiology, 17(s1), S169-S177. doi:10.1111/j.1540-8167.2006.00401.x

Wu, L., Shryock, J. C., Song, Y., Li, Y., Antzelevitch, C., & Belardinelli, L. (2004). Antiarrhythmic Effects of Ranolazine in a Guinea Pig in Vitro Model of Long-QT Syndrome. Journal of Pharmacology and Experimental Therapeutics, 310(2), 599-605. doi:10.1124/jpet.104.066100

MOSS, A. J., ZAREBA, W., SCHWARZ, K. Q., ROSERO, S., MCNITT, S., & ROBINSON, J. L. (2008). Ranolazine Shortens Repolarization in Patients with Sustained Inward Sodium Current Due to Type-3 Long-QT Syndrome. Journal of Cardiovascular Electrophysiology, 19(12), 1289-1293. doi:10.1111/j.1540-8167.2008.01246.x

Song, Y., Shryock, J. C., Wu, L., & Belardinelli, L. (2004). Antagonism by Ranolazine of the Pro-Arrhythmic Effects of Increasing Late INa in Guinea Pig Ventricular Myocytes. Journal of Cardiovascular Pharmacology, 44(2), 192-199. doi:10.1097/00005344-200408000-00008

Belardinelli, L., Liu, G., Smith-Maxwell, C., Wang, W.-Q., El-Bizri, N., Hirakawa, R., … Shryock, J. C. (2012). A Novel, Potent, and Selective Inhibitor of Cardiac Late Sodium Current Suppresses Experimental Arrhythmias. Journal of Pharmacology and Experimental Therapeutics, 344(1), 23-32. doi:10.1124/jpet.112.198887

Banyasz, T., Koncz, R., Fulop, L., Szentandrassy, N., Magyar, J., & Nanasi, P. (2004). Profile of IKs During the Action Potential Questions the Therapeutic Value of IKs Blockade. Current Medicinal Chemistry, 11(1), 45-60. doi:10.2174/0929867043456304

Hopenfeld, B. (2006). A mathematical analysis of the action potential plateau duration of a human ventricular myocyte. Journal of Theoretical Biology, 240(2), 311-322. doi:10.1016/j.jtbi.2005.09.021

Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054

Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical Model of an Adult Human Atrial Cell. Circulation Research, 82(1), 63-81. doi:10.1161/01.res.82.1.63

Viswanathan, P. (1999). Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovascular Research, 42(2), 530-542. doi:10.1016/s0008-6363(99)00035-8

Wu, R., & Patwardhan, A. (2007). Effects of rapid and slow potassium repolarization currents and calcium dynamics on hysteresis in restitution of action potential duration. Journal of Electrocardiology, 40(2), 188-199. doi:10.1016/j.jelectrocard.2006.01.001

Zaniboni, M. (2011). 3D current–voltage–time surfaces unveil critical repolarization differences underlying similar cardiac action potentials: A model study. Mathematical Biosciences, 233(2), 98-110. doi:10.1016/j.mbs.2011.06.008

Zaniboni, M. (2012). Late Phase of Repolarization is Autoregenerative and Scales Linearly with Action Potential Duration in Mammals Ventricular Myocytes: A Model Study. IEEE Transactions on Biomedical Engineering, 59(1), 226-233. doi:10.1109/tbme.2011.2170987

Zaniboni, M., Riva, I., Cacciani, F., & Groppi, M. (2010). How different two almost identical action potentials can be: A model study on cardiac repolarization. Mathematical Biosciences, 228(1), 56-70. doi:10.1016/j.mbs.2010.08.007

Belardinelli, L., Antzelevitch, C., & Vos, M. A. (2003). Assessing predictors of drug-induced torsade de pointes. Trends in Pharmacological Sciences, 24(12), 619-625. doi:10.1016/j.tips.2003.10.002

Shah, R. R., & Hondeghem, L. M. (2005). Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm, 2(7), 758-772. doi:10.1016/j.hrthm.2005.03.023

Hondeghem, L. M., Carlsson, L., & Duker, G. (2001). Instability and Triangulation of the Action Potential Predict Serious Proarrhythmia, but Action Potential Duration Prolongation Is Antiarrhythmic. Circulation, 103(15), 2004-2013. doi:10.1161/01.cir.103.15.2004

Mirams, G. R., Cui, Y., Sher, A., Fink, M., Cooper, J., Heath, B. M., … Noble, D. (2011). Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovascular Research, 91(1), 53-61. doi:10.1093/cvr/cvr044

Obiol-Pardo, C., Gomis-Tena, J., Sanz, F., Saiz, J., & Pastor, M. (2011). A Multiscale Simulation System for the Prediction of Drug-Induced Cardiotoxicity. Journal of Chemical Information and Modeling, 51(2), 483-492. doi:10.1021/ci100423z

Suzuki, S., Murakami, S., Tsujimae, K., Findlay, I., & Kurachi, Y. (2008). In silico risk assessment for drug-induction of cardiac arrhythmia. Progress in Biophysics and Molecular Biology, 98(1), 52-60. doi:10.1016/j.pbiomolbio.2008.05.003

Mirams, G. R., Davies, M. R., Cui, Y., Kohl, P., & Noble, D. (2012). Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing. British Journal of Pharmacology, 167(5), 932-945. doi:10.1111/j.1476-5381.2012.02020.x

Sarkar, A. X., & Sobie, E. A. (2011). Quantification of repolarization reserve to understand interpatient variability in the response to proarrhythmic drugs: A computational analysis. Heart Rhythm, 8(11), 1749-1755. doi:10.1016/j.hrthm.2011.05.023

CHANG, C., ACHARFI, S., WU, M., CHIANG, F., WANG, J., SUNG, T., & CHAHINE, M. (2004). A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovascular Research, 64(2), 268-278. doi:10.1016/j.cardiores.2004.07.007

Weirich, J., & Antoni, H. (1998). Rate-dependence of antiarrhythmic and proarrhythmic properties of class I and class III antiarrhythmic drugs. Basic Research in Cardiology, 93(0), s125-s132. doi:10.1007/s003950050236

O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061

Wu, L., Ma, J., Li, H., Wang, C., Grandi, E., Zhang, P., … Belardinelli, L. (2011). Late Sodium Current Contributes to the Reverse Rate-Dependent Effect of I Kr Inhibition on Ventricular Repolarization. Circulation, 123(16), 1713-1720. doi:10.1161/circulationaha.110.000661

Banyasz, T., Barandi, L., Harmati, G., Virag, L., Szentandrassy, N., Marton, I., … P. Nanasi, P. (2011). Mechanism of Reverse Rate-Dependent Action of Cardioactive Agents. Current Medicinal Chemistry, 18(24), 3597-3606. doi:10.2174/092986711796642355

Noble D, Tsien RW. The repolarization process of heart cells. In: DeMello WC, ed. Electrical Phenomena in the Heart. New York: Academic Press, 1972:133-161.

Fink, M., Noble, D., Virag, L., Varro, A., & Giles, W. R. (2008). Contributions of HERG K+ current to repolarization of the human ventricular action potential. Progress in Biophysics and Molecular Biology, 96(1-3), 357-376. doi:10.1016/j.pbiomolbio.2007.07.011

Goineau, S., Castagné, V., Guillaume, P., & Froget, G. (2012). The comparative sensitivity of three in vitro safety pharmacology models for the detection of lidocaine-induced cardiac effects. Journal of Pharmacological and Toxicological Methods, 66(1), 52-58. doi:10.1016/j.vascn.2012.06.001

Wu, L., Guo, D., Li, H., Hackett, J., Yan, G.-X., Jiao, Z., … Belardinelli, L. (2008). Role of late sodium current in modulating the proarrhythmic and antiarrhythmic effects of quinidine. Heart Rhythm, 5(12), 1726-1734. doi:10.1016/j.hrthm.2008.09.008

Diness, J. G., Hansen, R. S., Nissen, J. D., Jespersen, T., & Grunnet, M. (2009). Antiarrhythmic effect of IKr activation in a cellular model of LQT3. Heart Rhythm, 6(1), 100-106. doi:10.1016/j.hrthm.2008.10.020

Laursen, M., Olesen, S.-P., Grunnet, M., Mow, T., & Jespersen, T. (2011). Characterization of cardiac repolarization in the Göttingen minipig. Journal of Pharmacological and Toxicological Methods, 63(2), 186-195. doi:10.1016/j.vascn.2010.10.001

HONDEGHEM, L. M. (2006). Thorough QT/QTc Not So Thorough: Removes Torsadogenic Predictors from the T-Wave, Incriminates Safe Drugs, and Misses Profibrillatory Drugs. Journal of Cardiovascular Electrophysiology, 17(3), 337-340. doi:10.1111/j.1540-8167.2006.00347.x

Hondeghem, L. M., & Snyders, D. J. (1990). Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation, 81(2), 686-690. doi:10.1161/01.cir.81.2.686

Bril, A. (1998). Combined potassium and calcium channel antagonistic activities as a basis for neutral frequency dependent increase in action potential duration: comparison between BRL-32872 and azimilide. Cardiovascular Research, 37(1), 130-140. doi:10.1016/s0008-6363(97)00216-2

Jurkiewicz, N. K., & Sanguinetti, M. C. (1993). Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circulation Research, 72(1), 75-83. doi:10.1161/01.res.72.1.75

O’Hara, T., & Rudy, Y. (2012). Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species. American Journal of Physiology-Heart and Circulatory Physiology, 302(5), H1023-H1030. doi:10.1152/ajpheart.00785.2011

Stengl, M., Volders, P. G. A., Thomsen, M. B., Spatjens, R. L. H. M. G., Sipido, K. R., & Vos, M. A. (2003). Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes. The Journal of Physiology, 551(3), 777-786. doi:10.1113/jphysiol.2003.044040

Shah, R. R. (2002). The significance of QT interval in drug development. British Journal of Clinical Pharmacology, 54(2), 188-202. doi:10.1046/j.1365-2125.2002.01627.x

Nuyens, D., Stengl, M., Dugarmaa, S., Rossenbacker, T., Compernolle, V., Rudy, Y., … Carmeliet, P. (2001). Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nature Medicine, 7(9), 1021-1027. doi:10.1038/nm0901-1021

Gautier, M., Zhang, H., & Fearon, I. M. (2008). Peroxynitrite formation mediates LPC-induced augmentation of cardiac late sodium currents. Journal of Molecular and Cellular Cardiology, 44(2), 241-251. doi:10.1016/j.yjmcc.2007.09.007

Fearon, I. M., & Brown, S. T. (2004). Acute and chronic hypoxic regulation of recombinant hNav1.5 α subunits. Biochemical and Biophysical Research Communications, 324(4), 1289-1295. doi:10.1016/j.bbrc.2004.09.188

Ward, C. A., & Giles, W. R. (1997). Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. The Journal of Physiology, 500(3), 631-642. doi:10.1113/jphysiol.1997.sp022048

Saint, D. A. (2009). The cardiac persistent sodium current: an appealing therapeutic target? British Journal of Pharmacology, 153(6), 1133-1142. doi:10.1038/sj.bjp.0707492

Zygmunt, A. C., Eddlestone, G. T., Thomas, G. P., Nesterenko, V. V., & Antzelevitch, C. (2001). Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 281(2), H689-H697. doi:10.1152/ajpheart.2001.281.2.h689

Trenor, B., Cardona, K., Gomez, J. F., Rajamani, S., Ferrero, J. M., Belardinelli, L., & Saiz, J. (2012). Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure. PLoS ONE, 7(3), e32659. doi:10.1371/journal.pone.0032659

Martin, R. L., McDermott, J. S., Salmen, H. J., Palmatier, J., Cox, B. F., & Gintant, G. A. (2004). The Utility of hERG and Repolarization Assays in Evaluating Delayed Cardiac Repolarization: Influence of Multi-Channel Block. Journal of Cardiovascular Pharmacology, 43(3), 369-379. doi:10.1097/00005344-200403000-00007

Antzelevitch, C., Belardinelli, L., Zygmunt, A. C., Burashnikov, A., Di Diego, J. M., Fish, J. M., … Thomas, G. (2004). Electrophysiological Effects of Ranolazine, a Novel Antianginal Agent With Antiarrhythmic Properties. Circulation, 110(8), 904-910. doi:10.1161/01.cir.0000139333.83620.5d

Noble, D. (2006). Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart, 92(suppl_4), iv1-iv5. doi:10.1136/hrt.2005.078782

Scirica, B. M., Morrow, D. A., Hod, H., Murphy, S. A., Belardinelli, L., Hedgepeth, C. M., … Braunwald, E. (2007). Effect of Ranolazine, an Antianginal Agent With Novel Electrophysiological Properties, on the Incidence of Arrhythmias in Patients With Non–ST-Segment–Elevation Acute Coronary Syndrome. Circulation, 116(15), 1647-1652. doi:10.1161/circulationaha.107.724880

Hoefen, R., Reumann, M., Goldenberg, I., Moss, A. J., O-Uchi, J., Gu, Y., … Lopes, C. M. (2012). In Silico Cardiac Risk Assessment in Patients With Long QT Syndrome. Journal of the American College of Cardiology, 60(21), 2182-2191. doi:10.1016/j.jacc.2012.07.053

Silva, J. R., Pan, H., Wu, D., Nekouzadeh, A., Decker, K. F., Cui, J., … Rudy, Y. (2009). A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proceedings of the National Academy of Sciences, 106(27), 11102-11106. doi:10.1073/pnas.0904505106

STARMER, C. (1991). Lidocaine blockade of continuously and transiently accessible sites in cardiac sodium channels*1. Journal of Molecular and Cellular Cardiology, 23, 73-83. doi:10.1016/0022-2828(91)90026-i

Rudy, Y., & Silva, J. R. (2006). Computational biology in the study of cardiac ion channels and cell electrophysiology. Quarterly Reviews of Biophysics, 39(1), 57-116. doi:10.1017/s0033583506004227

Clancy, C. E., Zhu, Z. I., & Rudy, Y. (2007). Pharmacogenetics and anti-arrhythmic drug therapy: a theoretical investigation. American Journal of Physiology-Heart and Circulatory Physiology, 292(1), H66-H75. doi:10.1152/ajpheart.00312.2006

Zygmunt, A. C., Nesterenko, V. V., Rajamani, S., Hu, D., Barajas-Martinez, H., Belardinelli, L., & Antzelevitch, C. (2011). Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1606-H1614. doi:10.1152/ajpheart.00242.2011

Nesterenko, V. V., Zygmunt, A. C., Rajamani, S., Belardinelli, L., & Antzelevitch, C. (2011). Mechanisms of atrial-selective block of Na+ channels by ranolazine: II. Insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1615-H1624. doi:10.1152/ajpheart.00243.2011

Zemzemi, N., Bernabeu, M. O., Saiz, J., Cooper, J., Pathmanathan, P., Mirams, G. R., … Rodriguez, B. (2013). Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials. British Journal of Pharmacology, 168(3), 718-733. doi:10.1111/j.1476-5381.2012.02200.x

Hille B. Ionic Channels of Excitable Membranes. 2nd ed. Sunderland, MA: Sinauer Associates, 1992.

Rajamani, S., Shryock, J. C., & Belardinelli, L. (2008). Rapid Kinetic Interactions of Ranolazine With HERG K+ Current. Journal of Cardiovascular Pharmacology, 51(6), 581-589. doi:10.1097/fjc.0b013e3181799690

Rajamani, S., El-Bizri, N., Shryock, J. C., Makielski, J. C., & Belardinelli, L. (2009). Use-dependent block of cardiac late Na+ current by ranolazine. Heart Rhythm, 6(11), 1625-1631. doi:10.1016/j.hrthm.2009.07.042

Bassingthwaighte, J., Hunter, P., & Noble, D. (2009). The Cardiac Physiome: perspectives for the future. Experimental Physiology, 94(5), 597-605. doi:10.1113/expphysiol.2008.044099

Quinn, T. A., Granite, S., Allessie, M. A., Antzelevitch, C., Bollensdorff, C., Bub, G., … Delmar, M. (2011). Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 107(1), 4-10. doi:10.1016/j.pbiomolbio.2011.07.001

Glukhov, A. V., Fedorov, V. V., Lou, Q., Ravikumar, V. K., Kalish, P. W., Schuessler, R. B., … Efimov, I. R. (2010). Transmural Dispersion of Repolarization in Failing and Nonfailing Human Ventricle. Circulation Research, 106(5), 981-991. doi:10.1161/circresaha.109.204891

MALTSEV, V., & UNDROVINAS, A. (2006). A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes. Cardiovascular Research, 69(1), 116-127. doi:10.1016/j.cardiores.2005.08.015

Drouin, E., Charpentier, F., Gauthier, C., Laurent, K., & Le Marec, H. (1995). Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: Evidence for presence of M cells. Journal of the American College of Cardiology, 26(1), 185-192. doi:10.1016/0735-1097(95)00167-x

Berecki, G., Zegers, J. G., Bhuiyan, Z. A., Verkerk, A. O., Wilders, R., & Van Ginneken, A. C. G. (2006). Long-QT syndrome-related sodium channel mutations probed by the dynamic action potential clamp technique. The Journal of Physiology, 570(2), 237-250. doi:10.1113/jphysiol.2005.096578

Valdivia, C. R., Chu, W. W., Pu, J., Foell, J. D., Haworth, R. A., Wolff, M. R., … Makielski, J. C. (2005). Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. Journal of Molecular and Cellular Cardiology, 38(3), 475-483. doi:10.1016/j.yjmcc.2004.12.012

Belardinelli, L. (2006). Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart, 92(suppl_4), iv6-iv14. doi:10.1136/hrt.2005.078790

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem