- -

MicroRNA precursors are not structurally robust but plastic

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MicroRNA precursors are not structurally robust but plastic

Mostrar el registro completo del ítem

Rodrigo Tarrega, G.; Elena Fito, SF. (2013). MicroRNA precursors are not structurally robust but plastic. Genome Biology and Evolution. 5(1):181-186. https://doi.org/10.1093/gbe/evs132

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68012

Ficheros en el ítem

Metadatos del ítem

Título: MicroRNA precursors are not structurally robust but plastic
Autor: Rodrigo Tarrega, Guillermo Elena Fito, Santiago Fco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
Robustness is considered a ubiquitous property of living systems at all levels of organization, and small noncoding RNA (sncRNA) is a genuine model for its study at the molecular level. In this communication, we question ...[+]
Palabras clave: Conformational flexibility , Evolvability , Noncoding RNA , Secondary structure , Thermodynamics
Derechos de uso: Reserva de todos los derechos
Fuente:
Genome Biology and Evolution. (issn: 1759-6653 )
DOI: 10.1093/gbe/evs132
Editorial:
Oxford University Press (OUP)
Versión del editor: http://dx.doi.org/10.1093/gbe/evs132
Código del Proyecto:
info:eu-repo/grantAgreement/EC/Marie Skłodowska-Curie Actions/ALTF-1177-2011/
info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/
Agradecimientos:
The authors thank R. B. R. Azevedo for useful comments. This work was supported by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011) to G. R. and by grant BFU2012-30805 from the Spanish Secretaria ...[+]
Tipo: Artículo

References

Ancel, L. W., & Fontana, W. (2000). Plasticity, evolvability, and modularity in RNA. Journal of Experimental Zoology, 288(3), 242-283. doi:10.1002/1097-010x(20001015)288:3<242::aid-jez5>3.0.co;2-o

Borenstein, E., & Ruppin, E. (2006). Direct evolution of genetic robustness in microRNA. Proceedings of the National Academy of Sciences, 103(17), 6593-6598. doi:10.1073/pnas.0510600103

CLOTE, P. (2005). Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA, 11(5), 578-591. doi:10.1261/rna.7220505 [+]
Ancel, L. W., & Fontana, W. (2000). Plasticity, evolvability, and modularity in RNA. Journal of Experimental Zoology, 288(3), 242-283. doi:10.1002/1097-010x(20001015)288:3<242::aid-jez5>3.0.co;2-o

Borenstein, E., & Ruppin, E. (2006). Direct evolution of genetic robustness in microRNA. Proceedings of the National Academy of Sciences, 103(17), 6593-6598. doi:10.1073/pnas.0510600103

CLOTE, P. (2005). Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA, 11(5), 578-591. doi:10.1261/rna.7220505

Draghi, J. A., Parsons, T. L., Wagner, G. P., & Plotkin, J. B. (2010). Mutational robustness can facilitate adaptation. Nature, 463(7279), 353-355. doi:10.1038/nature08694

Eddy, S. R. (2001). Non–coding RNA genes and the modern RNA world. Nature Reviews Genetics, 2(12), 919-929. doi:10.1038/35103511

Fang, X.-W., Golden, B. L., Littrell, K., Shelton, V., Thiyagarajan, P., Pan, T., & Sosnick, T. R. (2001). The thermodynamic origin of the stability of a thermophilic ribozyme. Proceedings of the National Academy of Sciences, 98(8), 4355-4360. doi:10.1073/pnas.071050698

Gruber, A. R., Bernhart, S. H., Hofacker, I. L., & Washietl, S. (2008). Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics, 9(1), 122. doi:10.1186/1471-2105-9-122

Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163

Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826-837. doi:10.1038/nrg1471

Kozomara, A., & Griffiths-Jones, S. (2010). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 39(Database), D152-D157. doi:10.1093/nar/gkq1027

Layton, D. M. (2005). A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation. Nucleic Acids Research, 33(2), 519-524. doi:10.1093/nar/gkh983

Lee, Y. (2002). MicroRNA maturation: stepwise processing and subcellular localization. The EMBO Journal, 21(17), 4663-4670. doi:10.1093/emboj/cdf476

Lynch, M., & Conery, J. S. (2003). The Origins of Genome Complexity. Science, 302(5649), 1401-1404. doi:10.1126/science.1089370

McCaskill, J. S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29(6-7), 1105-1119. doi:10.1002/bip.360290621

Neilsen, C. T., Goodall, G. J., & Bracken, C. P. (2012). IsomiRs – the overlooked repertoire in the dynamic microRNAome. Trends in Genetics, 28(11), 544-549. doi:10.1016/j.tig.2012.07.005

Nozawa, M., Miura, S., & Nei, M. (2010). Origins and Evolution of MicroRNA Genes in Drosophila Species. Genome Biology and Evolution, 2, 180-189. doi:10.1093/gbe/evq009

Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics, 6(2), 119-127. doi:10.1038/nrg1523

Parisien, M., Cruz, J. A., Westhof, E., & Major, F. (2009). New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA, 15(10), 1875-1885. doi:10.1261/rna.1700409

Price, N., Cartwright, R. A., Sabath, N., Graur, D., & Azevedo, R. B. R. (2011). Neutral Evolution of Robustness in Drosophila microRNA Precursors. Molecular Biology and Evolution, 28(7), 2115-2123. doi:10.1093/molbev/msr029

Rodrigo, G., & Fares, M. A. (2012). Describing the structural robustness landscape of bacterial small RNAs. BMC Evolutionary Biology, 12(1), 52. doi:10.1186/1471-2148-12-52

Sanjuán, R., Cuevas, J. M., Furió, V., Holmes, E. C., & Moya, A. (2007). Selection for Robustness in Mutagenized RNA Viruses. PLoS Genetics, 3(6), e93. doi:10.1371/journal.pgen.0030093

Shu, W., Bo, X., Ni, M., Zheng, Z., & Wang, S. (2007). In silico genetic robustness analysis of microRNA secondary structures: potential evidence of congruent evolution in microRNA. BMC Evolutionary Biology, 7(1), 223. doi:10.1186/1471-2148-7-223

Starega-Roslan, J., Krol, J., Koscianska, E., Kozlowski, P., Szlachcic, W. J., Sobczak, K., & Krzyzosiak, W. J. (2010). Structural basis of microRNA length variety. Nucleic Acids Research, 39(1), 257-268. doi:10.1093/nar/gkq727

Szollosi, G. J., & Derenyi, I. (2009). Congruent Evolution of Genetic and Environmental Robustness in Micro-RNA. Molecular Biology and Evolution, 26(4), 867-874. doi:10.1093/molbev/msp008

Tokuriki, N., & Tawfik, D. S. (2009). Protein Dynamism and Evolvability. Science, 324(5924), 203-207. doi:10.1126/science.1169375

Wagner, A. (2012). The role of robustness in phenotypic adaptation and innovation. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1249-1258. doi:10.1098/rspb.2011.2293

Wagner, A., & Stadler, P. F. (1999). Viral RNA and evolved mutational robustness. Journal of Experimental Zoology, 285(2), 119-127. doi:10.1002/(sici)1097-010x(19990815)285:2<119::aid-jez4>3.0.co;2-d

Wuchty, S., Fontana, W., Hofacker, I. L., & Schuster, P. (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers, 49(2), 145-165. doi:10.1002/(sici)1097-0282(199902)49:2<145::aid-bip4>3.0.co;2-g

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem