- -

The Flyby Anomaly in an Extended Whitehead’s Theory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Flyby Anomaly in an Extended Whitehead’s Theory

Mostrar el registro completo del ítem

Acedo Rodríguez, L. (2015). The Flyby Anomaly in an Extended Whitehead’s Theory. Galaxies. 3(3):113-128. doi:10.3390/galaxies3030113

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68016

Ficheros en el ítem

Metadatos del ítem

Título: The Flyby Anomaly in an Extended Whitehead’s Theory
Autor: Acedo Rodríguez, Luis
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Fecha difusión:
Resumen:
In this paper, we consider an extended version of Whitehead s theory of gravity in connection with the flyby anomaly. Whitehead s theory is a linear approximation defined in a background Minkowski spacetime, which gives ...[+]
Palabras clave: Experimental tests of gravitational theories , Modified theories of gravity , Perihelion precession
Derechos de uso: Reconocimiento (by)
Fuente:
Galaxies. (issn: 2075-4434 )
DOI: 10.3390/galaxies3030113
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/galaxies3030113
Tipo: Artículo

References

A Generalized Whiteheadian Theory of Gravity: The Kerr Solution, unpublished paper, 1986 http://www.ctr4process.org/publications/ProcessStudies/PSS/2004-6-Russell-Wasserman-A_Generalized_Whiteheadian_Theory _of_Gravity.pdf

Kerr, R. P., & Schild, A. (1965). Some algebraically degenerate solutions of Einstein’s gravitational field equations. Proceedings of Symposia in Applied Mathematics, 199-209. doi:10.1090/psapm/017/0216846

Shapiro, I. I. (1964). Fourth Test of General Relativity. Physical Review Letters, 13(26), 789-791. doi:10.1103/physrevlett.13.789 [+]
A Generalized Whiteheadian Theory of Gravity: The Kerr Solution, unpublished paper, 1986 http://www.ctr4process.org/publications/ProcessStudies/PSS/2004-6-Russell-Wasserman-A_Generalized_Whiteheadian_Theory _of_Gravity.pdf

Kerr, R. P., & Schild, A. (1965). Some algebraically degenerate solutions of Einstein’s gravitational field equations. Proceedings of Symposia in Applied Mathematics, 199-209. doi:10.1090/psapm/017/0216846

Shapiro, I. I. (1964). Fourth Test of General Relativity. Physical Review Letters, 13(26), 789-791. doi:10.1103/physrevlett.13.789

Everitt, C. W. F., DeBra, D. B., Parkinson, B. W., Turneaure, J. P., Conklin, J. W., Heifetz, M. I., … Wang, S. (2011). Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Physical Review Letters, 106(22). doi:10.1103/physrevlett.106.221101

Everitt, C. W. F., Adams, M., Bencze, W., Buchman, S., Clarke, B., Conklin, J. W., … Worden, P. W. (2009). Gravity Probe B Data Analysis. Space Science Reviews, 148(1-4), 53-69. doi:10.1007/s11214-009-9524-7

Gibbons, G., & Will, C. M. (2008). On the multiple deaths of Whitehead’s theory of gravity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 39(1), 41-61. doi:10.1016/j.shpsb.2007.04.004

Bain, J. (1998). Whitehead’s Theory of Gravity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 29(4), 547-574. doi:10.1016/s1355-2198(98)00022-7

Reinhardt, M., & Rosenblum, A. (1974). Whitehead contra Einstein. Physics Letters A, 48(2), 115-116. doi:10.1016/0375-9601(74)90425-3

Hunter, A., & Fowler, A. (1934). The Solar Limb Effect. Monthly Notices of the Royal Astronomical Society, 94(7), 594-602. doi:10.1093/mnras/94.7.594

Adam, M. G., Ibbetson, P. A., & Petford, A. D. (1976). The Solar Limb Effect: Observations of Line Contours and Line Shifts. Monthly Notices of the Royal Astronomical Society, 177(3), 687-708. doi:10.1093/mnras/177.3.687

Anderson, J. D., Campbell, J. K., Ekelund, J. E., Ellis, J., & Jordan, J. F. (2008). Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of Earth. Physical Review Letters, 100(9). doi:10.1103/physrevlett.100.091102

Iorio, L. (2015). Gravitational anomalies in the solar system? International Journal of Modern Physics D, 24(06), 1530015. doi:10.1142/s0218271815300153

Poincaré, M. H. (1906). Sur la dynamique de l’électron. Rendiconti del Circolo matematico di Palermo, 21(1), 129-175. doi:10.1007/bf03013466

Carlip, S. (2000). Aberration and the speed of gravity. Physics Letters A, 267(2-3), 81-87. doi:10.1016/s0375-9601(00)00101-8

A new look inside the theory of the linear approximation: Gravity assists and Flybys http://www.lluisbel.com/upload/OnHold/FlyBys.pdf

Chapront, J., Chapront-Touzé, M., & Francou, G. (2002). A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements. Astronomy & Astrophysics, 387(2), 700-709. doi:10.1051/0004-6361:20020420

DE430 Lunar Orbit, Physical Librations, and Surface Coordinates http://proba2.sidc.be/aux/data/spice/docs/DE430_Lunar_Ephemeris_and_Orientation.pdf

Adler, S. L. (2009). Can the flyby anomaly be attributed to earth-bound dark matter? Physical Review D, 79(2). doi:10.1103/physrevd.79.023505

Pinheiro, M. J. (2014). The flyby anomaly and the effect of a topological torsion current. Physics Letters A, 378(41), 3007-3011. doi:10.1016/j.physleta.2014.09.003

Acedo, L. (2014). The flyby anomaly: A case for strong gravitomagnetism? Advances in Space Research, 54(4), 788-796. doi:10.1016/j.asr.2014.04.014

Iorio, L. (2014). A flyby anomaly for Juno? Not from standard physics. Advances in Space Research, 54(11), 2441-2445. doi:10.1016/j.asr.2014.06.035

Iorio, L. (2009). The Effect of General Relativity on Hyperbolic Orbits and Its Application to the Flyby Anomaly. Scholarly Research Exchange, 2009, 1-8. doi:10.3814/2009/807695

Ciufolini, I., Paolozzi, A., Koenig, R., Pavlis, E. C., Ries, J., Matzner, R., … Paris, C. (2013). Fundamental Physics and General Relativity with the LARES and LAGEOS satellites. Nuclear Physics B - Proceedings Supplements, 243-244, 180-193. doi:10.1016/j.nuclphysbps.2013.09.005

Ciufolini, I., Paolozzi, A., Pavlis, E., Ries, J., Gurzadyan, V., Koenig, R., … Sindoni, G. (2012). Testing General Relativity and gravitational physics using the LARES satellite. The European Physical Journal Plus, 127(11). doi:10.1140/epjp/i2012-12133-8

Renzetti, G. (2012). Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment? Canadian Journal of Physics, 90(9), 883-888. doi:10.1139/p2012-081

Renzetti, G. (2013). First results from LARES: An analysis. New Astronomy, 23-24, 63-66. doi:10.1016/j.newast.2013.03.001

Renzetti, G. (2014). Some reflections on the Lageos frame-dragging experiment in view of recent data analyses. New Astronomy, 29, 25-27. doi:10.1016/j.newast.2013.10.008

Iorio, L., Luca Ruggiero, M., & Corda, C. (2013). Novel considerations about the error budget of the LAGEOS-based tests of frame-dragging with GRACE geopotential models. Acta Astronautica, 91, 141-148. doi:10.1016/j.actaastro.2013.06.002

Iorio, L., Lichtenegger, H. I. M., Ruggiero, M. L., & Corda, C. (2010). Phenomenology of the Lense-Thirring effect in the solar system. Astrophysics and Space Science, 331(2), 351-395. doi:10.1007/s10509-010-0489-5

Iorio, L. (2008). An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging. Space Science Reviews, 148(1-4), 363-381. doi:10.1007/s11214-008-9478-1

Páramos, J., & Hechenblaikner, G. (2013). Probing the flyby anomaly with the future STE-QUEST mission. Planetary and Space Science, 79-80, 76-81. doi:10.1016/j.pss.2013.02.005

Iorio, L. (2010). Juno, the angular momentum of Jupiter and the Lense–Thirring effect. New Astronomy, 15(6), 554-560. doi:10.1016/j.newast.2010.01.004

Tommei, G., Dimare, L., Serra, D., & Milani, A. (2014). On the Juno radio science experiment: models, algorithms and sensitivity analysis. Monthly Notices of the Royal Astronomical Society, 446(3), 3089-3099. doi:10.1093/mnras/stu2328

Helled, R., Anderson, J. D., Schubert, G., & Stevenson, D. J. (2011). Jupiter’s moment of inertia: A possible determination by Juno. Icarus, 216(2), 440-448. doi:10.1016/j.icarus.2011.09.016

The Determination of Jupiter’s Angular Momentum from the Lense-Thirring Precession of the Juno Spacecraft http://adsabs.harvard.edu/abs/2011AGUFM.P41B1620F

Iorio, L. (2013). A possible new test of general relativity with Juno. Classical and Quantum Gravity, 30(19), 195011. doi:10.1088/0264-9381/30/19/195011

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem