- -

Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5)

Mostrar el registro completo del ítem

Balaguer Ramírez, M.; Yoo, C.; Bouwmeester, H.; Serra Alfaro, JM. (2013). Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5). Journal of Materials Chemistry. 1(35):10234-10242. https://doi.org/10.1039/c3ta11610g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68087

Ficheros en el ítem

Metadatos del ítem

Título: Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5)
Autor: Balaguer Ramírez, María Yoo, C.Y. Bouwmeester, H.J.M Serra Alfaro, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Bulk ionic and electronic transport properties and the rate of oxygen surface exchange of Tb-doped ceria have been evaluated as a function of Tb concentration, aiming to assess the potential use of the materials as ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Materials Chemistry. (issn: 0959-9428 )
DOI: 10.1039/c3ta11610g
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c3ta11610g
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BES-2009-015835-2/ES/BES-2009-015835-2/
info:eu-repo/grantAgreement/MICINN//ENE2011-24761/ES/DESARROLLO DE NUEVOS DISPOSITIVOS IONICOS PARA LA PRODUCCION EFICIENTE Y SOSTENIBLE DE ENERGIA Y PRODUCTOS QUIMICOS%2FCOMBUSTIBLES/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
Agradecimientos:
Funding from the Spanish Government (BES-2009-015835, ENE2011-24761 and SEV-2012-0267 grants) and Helmholtz Association (MEM-BRAIN Portfolio) is kindly acknowledged.
Tipo: Artículo

References

Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., & Jensen, A. D. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36(5), 581-625. doi:10.1016/j.pecs.2010.02.001

Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212

Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S., & Diniz da Costa, J. C. (2008). Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 320(1-2), 13-41. doi:10.1016/j.memsci.2008.03.074 [+]
Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., & Jensen, A. D. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36(5), 581-625. doi:10.1016/j.pecs.2010.02.001

Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212

Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S., & Diniz da Costa, J. C. (2008). Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 320(1-2), 13-41. doi:10.1016/j.memsci.2008.03.074

Fontaine, M.-L., Larring, Y., Norby, T., Grande, T., & Bredesen, R. (2007). Dense ceramic membranes based on ion conducting oxides. Annales de Chimie Science des Matériaux, 32(2), 197-212. doi:10.3166/acsm.32.197-212

Serra, J. M., Vert, V. B., Büchler, O., Meulenberg, W. A., & Buchkremer, H. P. (2008). IT-SOFC supported on Mixed Oxygen Ionic-Electronic Conducting Composites. Chemistry of Materials, 20(12), 3867-3875. doi:10.1021/cm702508f

Leo, A., Smart, S., Liu, S., & Diniz da Costa, J. C. (2011). High performance perovskite hollow fibres for oxygen separation. Journal of Membrane Science, 368(1-2), 64-68. doi:10.1016/j.memsci.2010.11.002

Liu, S., Tan, X., Shao, Z., & Diniz da Costa, J. C. (2006). Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation. AIChE Journal, 52(10), 3452-3461. doi:10.1002/aic.10966

Baumann, S., Serra, J. M., Lobera, M. P., Escolástico, S., Schulze-Küppers, F., & Meulenberg, W. A. (2011). Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 377(1-2), 198-205. doi:10.1016/j.memsci.2011.04.050

Tan, X., & Li, K. (2007). Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. AIChE Journal, 53(4), 838-845. doi:10.1002/aic.11116

ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032

Shao, Z. (2000). Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. Journal of Membrane Science, 172(1-2), 177-188. doi:10.1016/s0376-7388(00)00337-9

Leo, A., Liu, S., & Costa, J. C. D. da. (2009). Development of mixed conducting membranes for clean coal energy delivery. International Journal of Greenhouse Gas Control, 3(4), 357-367. doi:10.1016/j.ijggc.2008.11.003

Hoon Park, J., Pyo Kim, J., & Hwan Son, S. (2009). Oxygen permeation and stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane according to trace elements and oxygen partial pressure in synthetic air. Energy Procedia, 1(1), 369-374. doi:10.1016/j.egypro.2009.01.050

Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d

Fagg, D. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2007). High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. Journal of Membrane Science, 299(1-2), 1-7. doi:10.1016/j.memsci.2007.04.020

Chatzichristodoulou, C., Hendriksen, P. V., Hagen, A., & Grivel, J.-C. (2008). Oxygen Nonstoichiometry and Defect Chemistry Modelling of Ce0.8PrxTb0.2-xO2-δ. ECS Transactions. doi:10.1149/1.3050406

Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w

Lobera, M. P., Serra, J. M., Foghmoes, S. P., Søgaard, M., & Kaiser, A. (2011). On the use of supported ceria membranes for oxyfuel process/syngas production. Journal of Membrane Science, 385-386, 154-161. doi:10.1016/j.memsci.2011.09.031

Luo, H., Efimov, K., Jiang, H., Feldhoff, A., Wang, H., & Caro, J. (2010). CO2-Stable and Cobalt-Free Dual-Phase Membrane for Oxygen Separation. Angewandte Chemie International Edition, 50(3), 759-763. doi:10.1002/anie.201003723

Mauvy, F., Bassat, J. M., Boehm, E., Dordor, P., Grenier, J. C., & Loup, J. P. (2004). Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient. Journal of the European Ceramic Society, 24(6), 1265-1269. doi:10.1016/s0955-2219(03)00500-4

Yashiro, K. (2002). Mass transport properties of Ce0.9Gd0.1O2−δ at the surface and in the bulk. Solid State Ionics, 152-153, 469-476. doi:10.1016/s0167-2738(02)00375-2

Haworth, P. F., Smart, S., Serra, J. M., & Diniz da Costa, J. C. (2012). Combined investigation of bulk diffusion and surface exchange parameters of silver catalyst coated yttrium-doped BSCF membranes. Physical Chemistry Chemical Physics, 14(25), 9104. doi:10.1039/c2cp41226h

Bouwmeester, H. J. M., Song, C., Zhu, J., Yi, J., van Sint Annaland, M., & Boukamp, B. A. (2009). A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Physical Chemistry Chemical Physics, 11(42), 9640. doi:10.1039/b912712g

Armstrong, E. N., Duncan, K. L., Oh, D. J., Weaver, J. F., & Wachsman, E. D. (2011). Determination of Surface Exchange Coefficients of LSM, LSCF, YSZ, GDC Constituent Materials in Composite SOFC Cathodes. Journal of The Electrochemical Society, 158(5), B492. doi:10.1149/1.3555122

Bouwmeester, H. J. M., Den Otter, M. W., & Boukamp, B. A. (2004). Oxygen transport in La0.6Sr0.4Co1−y Fe y O3−δ. Journal of Solid State Electrochemistry, 8(9), 599-605. doi:10.1007/s10008-003-0488-3

Kumar, A., Babu, S., Karakoti, A. S., Schulte, A., & Seal, S. (2009). Luminescence Properties of Europium-Doped Cerium Oxide Nanoparticles: Role of Vacancy and Oxidation States. Langmuir, 25(18), 10998-11007. doi:10.1021/la901298q

Yoo, C.-Y., Boukamp, B. A., & Bouwmeester, H. J. M. (2010). Oxygen surface exchange kinetics of erbia-stabilized bismuth oxide. Journal of Solid State Electrochemistry, 15(2), 231-236. doi:10.1007/s10008-010-1168-8

Ye, F., Mori, T., Ou, D. R., Zou, J., & Drennan, J. (2007). Microstructural characterization of terbium-doped ceria. Materials Research Bulletin, 42(5), 943-949. doi:10.1016/j.materresbull.2006.08.007

Hong, S. J., & Virkar, A. V. (1995). Lattice Parameters and Densities of Rare-Earth Oxide Doped Ceria Electrolytes. Journal of the American Ceramic Society, 78(2), 433-439. doi:10.1111/j.1151-2916.1995.tb08820.x

Fagg, D. P., Frade, J. R., Mogensen, M., & Irvine, J. T. S. (2007). Effects of firing schedule on solubility limits and transport properties of ZrO2–TiO2–Y2O3 fluorites. Journal of Solid State Chemistry, 180(8), 2371-2376. doi:10.1016/j.jssc.2007.06.016

NICHOLAS, J., & DEJONGHE, L. (2007). Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide. Solid State Ionics, 178(19-20), 1187-1194. doi:10.1016/j.ssi.2007.05.019

Fagg, D. P., García-Martin, S., Kharton, V. V., & Frade, J. R. (2009). Transport Properties of Fluorite-Type Ce0.8Pr0.2O2−δ: Optimization via the Use of Cobalt Oxide Sintering Aid. Chemistry of Materials, 21(2), 381-391. doi:10.1021/cm802708a

Fagg, D. P., Marozau, I. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2006). Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8−xPr0.2O2−δ, x=0, 0.15, 0.2. Journal of Solid State Chemistry, 179(11), 3347-3356. doi:10.1016/j.jssc.2006.06.028

Duncan, K. L., Wang, Y., Bishop, S. R., Ebrahimi, F., & Wachsman, E. D. (2007). The role of point defects in the physical properties of nonstoichiometric ceria. Journal of Applied Physics, 101(4), 044906. doi:10.1063/1.2559601

Tang, C.-W., Wang, C.-B., & Chien, S.-H. (2008). Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochimica Acta, 473(1-2), 68-73. doi:10.1016/j.tca.2008.04.015

Tuller, H. L., Bishop, S. R., Chen, D., Kuru, Y., Kim, J.-J., & Stefanik, T. S. (2012). Praseodymium doped ceria: Model mixed ionic electronic conductor with coupled electrical, optical, mechanical and chemical properties. Solid State Ionics, 225, 194-197. doi:10.1016/j.ssi.2012.02.029

Schmale, K., Grünebaum, M., Janssen, M., Baumann, S., Schulze-Küppers, F., & Wiemhöfer, H.-D. (2010). Electronic conductivity of Ce0.8Gd0.2−xPrxO2−δ and influence of added CoO. physica status solidi (b), 248(2), 314-322. doi:10.1002/pssb.201046365

López, R., & Gómez, R. (2011). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 61(1), 1-7. doi:10.1007/s10971-011-2582-9

MURPHY, A. (2007). Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells, 91(14), 1326-1337. doi:10.1016/j.solmat.2007.05.005

Paparazzo, E. (2011). On the curve-fitting of XPS Ce(3d) spectra of cerium oxides. Materials Research Bulletin, 46(2), 323-326. doi:10.1016/j.materresbull.2010.11.009

BENJARAM, M. R., GODE, T., & KATTA, L. (2011). Nanosized Unsupported and Alumina-Supported Ceria-Zirconia and Ceria-Terbia Solid Solutions for CO Oxidation. Chinese Journal of Catalysis, 32(5), 800-806. doi:10.1016/s1872-2067(10)60227-6

Larachi, F., Pierre, J., Adnot, A., & Bernis, A. (2002). Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Applied Surface Science, 195(1-4), 236-250. doi:10.1016/s0169-4332(02)00559-7

Nagpure, I. M., Pitale, S. S., Coetsee, E., Ntwaeaborwa, O. M., Terblans, J. J., & Swart, H. C. (2011). Low voltage electron induced cathodoluminescence degradation and surface characterization of Sr3(PO4)2:Tb phosphor. Applied Surface Science, 257(23), 10147-10155. doi:10.1016/j.apsusc.2011.07.008

Blanco, G., Pintado, J. M., Bernal, S., Cauqui, M. A., Corchado, M. P., Galtayries, A., … Drube, W. (2002). Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component. Surface and Interface Analysis, 34(1), 120-124. doi:10.1002/sia.1266

Sarma, D. D., & Rao, C. N. R. (1980). XPES studies of oxides of second- and third-row transition metals including rare earths. Journal of Electron Spectroscopy and Related Phenomena, 20(1), 25-45. doi:10.1016/0368-2048(80)85003-1

Zsoldos, Z., & Guczi, L. (1992). Structure and catalytic activity of alumina supported platinum-cobalt bimetallic catalysts. 3. Effect of treatment on the interface layer. The Journal of Physical Chemistry, 96(23), 9393-9400. doi:10.1021/j100202a061

Aspromonte, S. G., Sastre, Á., Boix, A. V., Cocero, M. J., & Alonso, E. (2012). Cobalt oxide nanoparticles on mesoporous MCM-41 and Al-MCM-41 by supercritical CO2 deposition. Microporous and Mesoporous Materials, 148(1), 53-61. doi:10.1016/j.micromeso.2011.07.014

Lane, J. (2000). Oxygen surface exchange on gadolinia doped ceria. Solid State Ionics, 136-137(1-2), 927-932. doi:10.1016/s0167-2738(00)00530-0

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem