- -

A Viscoelastic Model for Honeys Using the Time-Temperature Superposition Principle (TTSP)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A Viscoelastic Model for Honeys Using the Time-Temperature Superposition Principle (TTSP)

Show simple item record

Files in this item

dc.contributor.author Oroian, Mircea es_ES
dc.contributor.author Amariei, Sonia es_ES
dc.contributor.author Escriche Roberto, Mª Isabel es_ES
dc.contributor.author Gutt, Gheorghe es_ES
dc.date.accessioned 2016-09-02T12:48:10Z
dc.date.available 2016-09-02T12:48:10Z
dc.date.issued 2013-09
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/68631
dc.description.abstract [EN] The viscoelastic parameters storage modulus (G¡ä) and loss modulus (G¡å) were measured at different temperatures (5ºC, 10ºC, 15ºC, 20ºC, 25ºC, 30ºC, and 40ºC) using oscillatory thermal analysis in order to obtain a viscoelastic model for honey. The model (a 4th grade polynomial equation) ascertains the applicability of the time¿C temperature superposition principle (TTSP) to the dynamic viscoelastic properties. This model, with a regression coefficient higher than 0.99, is suitable for all honeys irrespective their botanical origin (monofloral, polyfloral, or honeydew). The activation energy and the relaxation modulus fit the model proposed. The relaxation modulus has a 4th grade polynomial equation evolution at all temperatures. The moisture content influences all the rheological parameters. es_ES
dc.description.sponsorship This paper was supported by the project "Knowledge provocation and development through doctoral research PRO-DOCT-Contract no. POSDRU/88/1.5/S/52946," project co-funded from European Social Fund through Sectorial Operational Program Human Resources 2007-2013. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation project "Knowledge provocation and development through doctoral research PRO-DOCT" POSDRU/88/1.5/S/52946 es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Honey es_ES
dc.subject TTS principle es_ES
dc.subject Vertical shift es_ES
dc.subject Horizontal shift es_ES
dc.subject Relaxation modulus es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title A Viscoelastic Model for Honeys Using the Time-Temperature Superposition Principle (TTSP) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-012-0893-7
dc.relation.projectID info:eu-repo/grantAgreement/ESF//POSDRU%2F88%2F1.5%2FS%2F52946/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Oroian, M.; Amariei, S.; Escriche Roberto, MI.; Gutt, G. (2013). A Viscoelastic Model for Honeys Using the Time-Temperature Superposition Principle (TTSP). Food and Bioprocess Technology. 6(9):2251-2260. doi:10.1007/s11947-012-0893-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s11947-012-0893-7 es_ES
dc.description.upvformatpinicio 2251 es_ES
dc.description.upvformatpfin 2260 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 257971 es_ES
dc.contributor.funder European Social Fund es_ES
dc.description.references Abu-Jdayil, B., Al-Majeed Ghzawi, A., Al-Malah, K. I. M., & Zaitoun, S. J. (2002). Heat effect on rheology of light- and darkcolored honey. Journal of Food Engineering, 51(1), 33–38. es_ES
dc.description.references Aguilar, C., Rizva, S. S. H., Ramirez, J. F., & Inda, A. (1991). Rheological behavior of processed mustard. I: Effect of milling treatment. Journal of Texture Studies, 22, 59–84. es_ES
dc.description.references Ahmed, J., & Ramaswamy, H. (2006). Viscoelastic properties of sweet potato puree infant food. Journal of Food Engineering, 74(3), 376–382. es_ES
dc.description.references Bhandari, B., D’Arcy, B., & Chow, S. (1999). Rheology of selected Australian honeys. Journal of Food Engineering, 41(1), 65–68. es_ES
dc.description.references Bogdanov S. (2002) Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld, CH-3003 Bern, Switzerland. es_ES
dc.description.references Bueche, F. (1952). Viscosity self-diffusion and allied effect in solid polymers. Journal of Chemical Physics, 20, 1959–1964. es_ES
dc.description.references Castro-Vázquez, L., Díaz-Maroto, M. C., Torres, C., & Pérez-Coello, M. S. (2010). Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Research International, 43(10), 2335–2340. es_ES
dc.description.references Chen, Y. W., Lin, C. H., Wu, F. Y., & Chen, H. H. (2009). Rheological properties of crystallized honey prepared by new type of nuclei. Journal of Food Process Engineering, 32, 512–527. es_ES
dc.description.references Chronakis, I. S., Doublier, J. L., & Piculell, L. (2000). Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 28(1), 1–14. es_ES
dc.description.references Dealy, J., & Plazek, D. (2009). Time-temperature superposition – a users guide. Rheological Bulletin, 78(2), 16–31. es_ES
dc.description.references Doi, M., & Edwards. (1986). The theory of polymer dynamics, chap. 7. Oxford: Clarendon. es_ES
dc.description.references Doublier, J. L., & Cuvelier, G. (1996). Gums and hydrocolloids: functional aspect. In A. C. Eliasson (Ed.), Carbohydrates in Food (pp. 283–318). New York: Marcel Dekker Inc. es_ES
dc.description.references Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of heating process on chemical composition and HMF levels in Sicilian monofloral honeys. Food Chemistry, 85(2), 305–313. es_ES
dc.description.references Friedrich, C. (1991a). Relaxation and retardation functions of Maxwell model with fractional derivates. Rheological Acta, 30, 151–158. es_ES
dc.description.references Friedrich, C. (1991b). Relaxation functions of rheological constitutive equations with fractional derivates: thermodynamical constraints. In J. Casa-Vásquez & D. Jou (Eds.), Lectures Nodes in Physics, Rheological Modelling: Thermodynamical and Statistical Approaches, vol. 381 (pp. 321–330). Berlin: Springer Verlag. es_ES
dc.description.references Glöcke, W. G., & Nonnenmacher, T. F. (1994). Fractional relaxation and the time-temperature superposition principle. Rheological Acta, 33, 337–343. es_ES
dc.description.references Gomez-Diaz, D., Navaza, J. M., & Quintans-Riveiro, L. C. (2009). Effect of temperature on the viscosity of honey. International Journal of Food Properties, 12(2), 396–404. es_ES
dc.description.references Guedes, R. M. (2011). A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time-temperature superposition principle. Polymer Testing, 30(3), 294–302. es_ES
dc.description.references Heymans, H. (2003). Constitutive equations for polymer viscoelasticity derived from hierarchical models in cases of failure of time-temperature superposition. Signal Processing, 83, 2345–2357. es_ES
dc.description.references Heymans, N., & Bauwens, J. C. (1994). Fractal rheolgical models and fractional differential equations for viscoelastical behavior. Rheological Acta, 33, 210–219. es_ES
dc.description.references Hong, S. I., Kim, Y. S., Choi, D. W., & Pyun, Y. R. (1992). Compressive creep behavior of rice starch gel. Korean Journal of Food Science & Technology, 24, 165–170. es_ES
dc.description.references Junzheng, P., & Changying, J. (1998). General rheological model for natural honeys in China. Journal of Food Engineering, 36(2), 165–168. es_ES
dc.description.references Juszczak, L., & Fortuna, T. (2006). Rheology of selected Polish honeys. Journal of Food Engineering, 73(1), 43–49. es_ES
dc.description.references Kang, K. M., & Yoo, B. (2008). Dynamic rheological properties of honeys at low temperatures as affected by moisture content and temperature. Food Science and Biotechnology, 17(1), 90–94. es_ES
dc.description.references Katsuta, K., & Kinsella, J. E. (1990). Effects of temperature on viscoelastic properties and activation energies of whey protein gels. Journal of Food Science, 55(5), 1296–1302. es_ES
dc.description.references Kumar, J. S., & Mandal, M. (2009). Rheology and thermal properties of marketed Indian honey. Nutrition and Food Science, 39(2), 111–117. es_ES
dc.description.references Lazaridou, A., Biliaderis, C. G., Bacandritsos, N., & Sabatini, A. G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9–21. es_ES
dc.description.references Lizarraga, M. S., Piante Vicin, D., González, R., Rubiolo, A., & Santiago, L. G. (2006). Rheological behaviour of whey protein concentrate and λ-carrageenan aqueous mixtures. Food Hydrocolloids, 20, 740–748. es_ES
dc.description.references Lusby, P., Coombes, A., & Wilkinson, J. (2005). Bactericidal activity of different honeys against pathogenic bacteria. Archives of Medical Researchm, 36(5), 464–467. es_ES
dc.description.references Menjivar, J. A., & Faridi, H. (1994). Rheological properties of cookie and cracker doughs. In H. Faridi (Ed.), The Science of Cookie and Craker Production (pp. 283–322). New York: Chapman & Hall. es_ES
dc.description.references Morris, E. R. (1989). Polysaccharide solution properties: origin, rheological characterization and implications for food systems. In R. P. Millan, J. N. BeMiller, & R. Chandrasekavan (Eds.), Frontiers in Carbohydrate Research – 1: Food Aplication (pp. 132–163). New York: Elsevier Applied Science Pub. es_ES
dc.description.references Mossel, B., Bhandari, B., D’Arcy, B., & Caffin, N. (2000). Use of Arrhenius model to predict rheological behaviour in some Australian honeys. Lebensmittel-Wissenschaft und Technologie, 33, 545–552. es_ES
dc.description.references Oroian, M., Amariei, S., Escriche, I., & Gutt, G. (2011). Rheological aspects of Spanish honeys. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0730-4 . es_ES
dc.description.references Ozdemir, C., Dagdemir, E., Ozdemir, S., & Sagdic, O. (2009). The effects of using alternative sweeteners to sucrose on ice cream quality. Journal of Food Quality, 31(4), 415–428. es_ES
dc.description.references Rao, M. A., & Cooley, H. J. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. Journal of Texture Studies, 23, 415–425. es_ES
dc.description.references Robson, V., Yorke, J., Sen, R., Lowe, D., & Rogers, S. (2011). Randomised controlled feasibility trial on the use of medical grade honey following microvascular free tissue transfer to reduce the incidence of wound infection. British Journal of Oral and Maxillofacial Surgery. doi: 10.1016/j.bjoms.2011.07.014 . es_ES
dc.description.references Rouse, P. E. (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. Journal of Chemical Physics, 21, 1272–1280. es_ES
dc.description.references Saénz-Laín, C., & Gómez-Ferreras, C. (2000). Mieles españolas: Características e identificación mediante el análisis del polen. Madrid: Mundi-Prensa Publishing. es_ES
dc.description.references Samanalieva, J., & Senge, B. (2009). Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology, 229, 107–113. es_ES
dc.description.references Sopade, P. A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., & Caffin, N. (2002). Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 56(1), 67–75. es_ES
dc.description.references Sopade, P. A., Halley, P. J., D’Arcy, B. R., Bhandari, B., & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27(4), 284–309. es_ES
dc.description.references Stomfay-Stitz, J. (1960). Honey: an ancient yet modern medicine. The Science Counsellor, 23, 110–125. es_ES
dc.description.references Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3706. es_ES
dc.description.references Witczak, M., Juszcak, L., & Galkowska, D. (2011). Non-Newtonian behaviour of heather honey. Journal of Food Engineering, 104(1), 532–537. es_ES
dc.description.references Yanniotis, S., Skaltsi, S., & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72(4), 372–377. es_ES
dc.description.references Yoo, B. (2004). Effect of temperature on dynamic rheology of Korean honeys. Journal of Food Engineering, 65, 459–463. es_ES
dc.description.references Yoon, W. B., Park, J. W., Kim, B. Y., & Kim, M. H. (1998). Dynamic properties of surimi-based seafood product as a function of moisture content. Food Engineering Progress, 2, 23–29. es_ES
dc.description.references Zumla, A., & Lulat, A. (1989). Honey—a remedy rediscovered. Journal of the Royal Society of Medicine, 82, 384–385. es_ES


This item appears in the following Collection(s)

Show simple item record