dc.contributor.author |
Oroian, Mircea
|
es_ES |
dc.contributor.author |
Amariei, Sonia
|
es_ES |
dc.contributor.author |
Escriche Roberto, Mª Isabel
|
es_ES |
dc.contributor.author |
Gutt, Gheorghe
|
es_ES |
dc.date.accessioned |
2016-09-02T12:48:10Z |
|
dc.date.available |
2016-09-02T12:48:10Z |
|
dc.date.issued |
2013-09 |
|
dc.identifier.issn |
1935-5130 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/68631 |
|
dc.description.abstract |
[EN] The viscoelastic parameters storage modulus (G¡ä)
and loss modulus (G¡å) were measured at different temperatures
(5ºC, 10ºC, 15ºC, 20ºC, 25ºC, 30ºC, and 40ºC)
using oscillatory thermal analysis in order to obtain a viscoelastic
model for honey. The model (a 4th grade polynomial
equation) ascertains the applicability of the time¿C
temperature superposition principle (TTSP) to the dynamic
viscoelastic properties. This model, with a regression coefficient
higher than 0.99, is suitable for all honeys irrespective
their botanical origin (monofloral, polyfloral, or
honeydew). The activation energy and the relaxation modulus fit the model
proposed. The relaxation modulus has a 4th grade polynomial
equation evolution at all temperatures. The moisture
content influences all the rheological parameters. |
es_ES |
dc.description.sponsorship |
This paper was supported by the project "Knowledge provocation and development through doctoral research PRO-DOCT-Contract no. POSDRU/88/1.5/S/52946," project co-funded from European Social Fund through Sectorial Operational Program Human Resources 2007-2013. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer Verlag (Germany) |
es_ES |
dc.relation |
project "Knowledge provocation and development through doctoral research PRO-DOCT" POSDRU/88/1.5/S/52946 |
es_ES |
dc.relation.ispartof |
Food and Bioprocess Technology |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Honey |
es_ES |
dc.subject |
TTS principle |
es_ES |
dc.subject |
Vertical shift |
es_ES |
dc.subject |
Horizontal shift |
es_ES |
dc.subject |
Relaxation modulus |
es_ES |
dc.subject.classification |
TECNOLOGIA DE ALIMENTOS |
es_ES |
dc.title |
A Viscoelastic Model for Honeys Using the Time-Temperature Superposition Principle (TTSP) |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s11947-012-0893-7 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/ESF//POSDRU%2F88%2F1.5%2FS%2F52946/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments |
es_ES |
dc.description.bibliographicCitation |
Oroian, M.; Amariei, S.; Escriche Roberto, MI.; Gutt, G. (2013). A Viscoelastic Model for Honeys Using the Time-Temperature Superposition Principle (TTSP). Food and Bioprocess Technology. 6(9):2251-2260. doi:10.1007/s11947-012-0893-7 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://dx.doi.org/10.1007/s11947-012-0893-7 |
es_ES |
dc.description.upvformatpinicio |
2251 |
es_ES |
dc.description.upvformatpfin |
2260 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
6 |
es_ES |
dc.description.issue |
9 |
es_ES |
dc.relation.senia |
257971 |
es_ES |
dc.contributor.funder |
European Social Fund |
es_ES |
dc.description.references |
Abu-Jdayil, B., Al-Majeed Ghzawi, A., Al-Malah, K. I. M., & Zaitoun, S. J. (2002). Heat effect on rheology of light- and darkcolored honey. Journal of Food Engineering, 51(1), 33–38. |
es_ES |
dc.description.references |
Aguilar, C., Rizva, S. S. H., Ramirez, J. F., & Inda, A. (1991). Rheological behavior of processed mustard. I: Effect of milling treatment. Journal of Texture Studies, 22, 59–84. |
es_ES |
dc.description.references |
Ahmed, J., & Ramaswamy, H. (2006). Viscoelastic properties of sweet potato puree infant food. Journal of Food Engineering, 74(3), 376–382. |
es_ES |
dc.description.references |
Bhandari, B., D’Arcy, B., & Chow, S. (1999). Rheology of selected Australian honeys. Journal of Food Engineering, 41(1), 65–68. |
es_ES |
dc.description.references |
Bogdanov S. (2002) Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld, CH-3003 Bern, Switzerland. |
es_ES |
dc.description.references |
Bueche, F. (1952). Viscosity self-diffusion and allied effect in solid polymers. Journal of Chemical Physics, 20, 1959–1964. |
es_ES |
dc.description.references |
Castro-Vázquez, L., Díaz-Maroto, M. C., Torres, C., & Pérez-Coello, M. S. (2010). Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Research International, 43(10), 2335–2340. |
es_ES |
dc.description.references |
Chen, Y. W., Lin, C. H., Wu, F. Y., & Chen, H. H. (2009). Rheological properties of crystallized honey prepared by new type of nuclei. Journal of Food Process Engineering, 32, 512–527. |
es_ES |
dc.description.references |
Chronakis, I. S., Doublier, J. L., & Piculell, L. (2000). Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 28(1), 1–14. |
es_ES |
dc.description.references |
Dealy, J., & Plazek, D. (2009). Time-temperature superposition – a users guide. Rheological Bulletin, 78(2), 16–31. |
es_ES |
dc.description.references |
Doi, M., & Edwards. (1986). The theory of polymer dynamics, chap. 7. Oxford: Clarendon. |
es_ES |
dc.description.references |
Doublier, J. L., & Cuvelier, G. (1996). Gums and hydrocolloids: functional aspect. In A. C. Eliasson (Ed.), Carbohydrates in Food (pp. 283–318). New York: Marcel Dekker Inc. |
es_ES |
dc.description.references |
Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of heating process on chemical composition and HMF levels in Sicilian monofloral honeys. Food Chemistry, 85(2), 305–313. |
es_ES |
dc.description.references |
Friedrich, C. (1991a). Relaxation and retardation functions of Maxwell model with fractional derivates. Rheological Acta, 30, 151–158. |
es_ES |
dc.description.references |
Friedrich, C. (1991b). Relaxation functions of rheological constitutive equations with fractional derivates: thermodynamical constraints. In J. Casa-Vásquez & D. Jou (Eds.), Lectures Nodes in Physics, Rheological Modelling: Thermodynamical and Statistical Approaches, vol. 381 (pp. 321–330). Berlin: Springer Verlag. |
es_ES |
dc.description.references |
Glöcke, W. G., & Nonnenmacher, T. F. (1994). Fractional relaxation and the time-temperature superposition principle. Rheological Acta, 33, 337–343. |
es_ES |
dc.description.references |
Gomez-Diaz, D., Navaza, J. M., & Quintans-Riveiro, L. C. (2009). Effect of temperature on the viscosity of honey. International Journal of Food Properties, 12(2), 396–404. |
es_ES |
dc.description.references |
Guedes, R. M. (2011). A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time-temperature superposition principle. Polymer Testing, 30(3), 294–302. |
es_ES |
dc.description.references |
Heymans, H. (2003). Constitutive equations for polymer viscoelasticity derived from hierarchical models in cases of failure of time-temperature superposition. Signal Processing, 83, 2345–2357. |
es_ES |
dc.description.references |
Heymans, N., & Bauwens, J. C. (1994). Fractal rheolgical models and fractional differential equations for viscoelastical behavior. Rheological Acta, 33, 210–219. |
es_ES |
dc.description.references |
Hong, S. I., Kim, Y. S., Choi, D. W., & Pyun, Y. R. (1992). Compressive creep behavior of rice starch gel. Korean Journal of Food Science & Technology, 24, 165–170. |
es_ES |
dc.description.references |
Junzheng, P., & Changying, J. (1998). General rheological model for natural honeys in China. Journal of Food Engineering, 36(2), 165–168. |
es_ES |
dc.description.references |
Juszczak, L., & Fortuna, T. (2006). Rheology of selected Polish honeys. Journal of Food Engineering, 73(1), 43–49. |
es_ES |
dc.description.references |
Kang, K. M., & Yoo, B. (2008). Dynamic rheological properties of honeys at low temperatures as affected by moisture content and temperature. Food Science and Biotechnology, 17(1), 90–94. |
es_ES |
dc.description.references |
Katsuta, K., & Kinsella, J. E. (1990). Effects of temperature on viscoelastic properties and activation energies of whey protein gels. Journal of Food Science, 55(5), 1296–1302. |
es_ES |
dc.description.references |
Kumar, J. S., & Mandal, M. (2009). Rheology and thermal properties of marketed Indian honey. Nutrition and Food Science, 39(2), 111–117. |
es_ES |
dc.description.references |
Lazaridou, A., Biliaderis, C. G., Bacandritsos, N., & Sabatini, A. G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9–21. |
es_ES |
dc.description.references |
Lizarraga, M. S., Piante Vicin, D., González, R., Rubiolo, A., & Santiago, L. G. (2006). Rheological behaviour of whey protein concentrate and λ-carrageenan aqueous mixtures. Food Hydrocolloids, 20, 740–748. |
es_ES |
dc.description.references |
Lusby, P., Coombes, A., & Wilkinson, J. (2005). Bactericidal activity of different honeys against pathogenic bacteria. Archives of Medical Researchm, 36(5), 464–467. |
es_ES |
dc.description.references |
Menjivar, J. A., & Faridi, H. (1994). Rheological properties of cookie and cracker doughs. In H. Faridi (Ed.), The Science of Cookie and Craker Production (pp. 283–322). New York: Chapman & Hall. |
es_ES |
dc.description.references |
Morris, E. R. (1989). Polysaccharide solution properties: origin, rheological characterization and implications for food systems. In R. P. Millan, J. N. BeMiller, & R. Chandrasekavan (Eds.), Frontiers in Carbohydrate Research – 1: Food Aplication (pp. 132–163). New York: Elsevier Applied Science Pub. |
es_ES |
dc.description.references |
Mossel, B., Bhandari, B., D’Arcy, B., & Caffin, N. (2000). Use of Arrhenius model to predict rheological behaviour in some Australian honeys. Lebensmittel-Wissenschaft und Technologie, 33, 545–552. |
es_ES |
dc.description.references |
Oroian, M., Amariei, S., Escriche, I., & Gutt, G. (2011). Rheological aspects of Spanish honeys. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0730-4 . |
es_ES |
dc.description.references |
Ozdemir, C., Dagdemir, E., Ozdemir, S., & Sagdic, O. (2009). The effects of using alternative sweeteners to sucrose on ice cream quality. Journal of Food Quality, 31(4), 415–428. |
es_ES |
dc.description.references |
Rao, M. A., & Cooley, H. J. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. Journal of Texture Studies, 23, 415–425. |
es_ES |
dc.description.references |
Robson, V., Yorke, J., Sen, R., Lowe, D., & Rogers, S. (2011). Randomised controlled feasibility trial on the use of medical grade honey following microvascular free tissue transfer to reduce the incidence of wound infection. British Journal of Oral and Maxillofacial Surgery. doi: 10.1016/j.bjoms.2011.07.014 . |
es_ES |
dc.description.references |
Rouse, P. E. (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. Journal of Chemical Physics, 21, 1272–1280. |
es_ES |
dc.description.references |
Saénz-Laín, C., & Gómez-Ferreras, C. (2000). Mieles españolas: Características e identificación mediante el análisis del polen. Madrid: Mundi-Prensa Publishing. |
es_ES |
dc.description.references |
Samanalieva, J., & Senge, B. (2009). Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology, 229, 107–113. |
es_ES |
dc.description.references |
Sopade, P. A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., & Caffin, N. (2002). Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 56(1), 67–75. |
es_ES |
dc.description.references |
Sopade, P. A., Halley, P. J., D’Arcy, B. R., Bhandari, B., & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27(4), 284–309. |
es_ES |
dc.description.references |
Stomfay-Stitz, J. (1960). Honey: an ancient yet modern medicine. The Science Counsellor, 23, 110–125. |
es_ES |
dc.description.references |
Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3706. |
es_ES |
dc.description.references |
Witczak, M., Juszcak, L., & Galkowska, D. (2011). Non-Newtonian behaviour of heather honey. Journal of Food Engineering, 104(1), 532–537. |
es_ES |
dc.description.references |
Yanniotis, S., Skaltsi, S., & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72(4), 372–377. |
es_ES |
dc.description.references |
Yoo, B. (2004). Effect of temperature on dynamic rheology of Korean honeys. Journal of Food Engineering, 65, 459–463. |
es_ES |
dc.description.references |
Yoon, W. B., Park, J. W., Kim, B. Y., & Kim, M. H. (1998). Dynamic properties of surimi-based seafood product as a function of moisture content. Food Engineering Progress, 2, 23–29. |
es_ES |
dc.description.references |
Zumla, A., & Lulat, A. (1989). Honey—a remedy rediscovered. Journal of the Royal Society of Medicine, 82, 384–385. |
es_ES |