- -

Development of a vehicle track interaction model to predict the vibratory benefits of rail grinding in the time domain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a vehicle track interaction model to predict the vibratory benefits of rail grinding in the time domain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Real Herráiz, Julia Irene es_ES
dc.contributor.author Zamorano, Clara es_ES
dc.contributor.author Velarte, José Luis es_ES
dc.contributor.author Blanco, Antonio Enrique es_ES
dc.date.accessioned 2016-09-06T08:50:48Z
dc.date.available 2016-09-06T08:50:48Z
dc.date.issued 2015-09
dc.identifier.issn 2095-087X
dc.identifier.uri http://hdl.handle.net/10251/68859
dc.description.abstract Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unknown. In order to assess the effectiveness of these measures, this paper develops a vehicle-track interaction model in the time domain of a curved track with presence of rail corrugation on the inner rail. To characterize the behavior of the track, a numerical finite element model is developed using ANSYS software, while the behavior of the vehicle is characterized by a unidirectional model of two masses developed with VAMPIRE PRO software. The overloads obtained with the dynamic model are applied to the numerical model and then, the vibrational response of the track is obtained. Results are validated with real data and used to assess the effectiveness of rail grinding in the reduction of wheel-rail forces and the vibration generation phenomenon. es_ES
dc.language Inglés es_ES
dc.publisher SpringerOpen es_ES
dc.relation.ispartof Journal of Modern Transportation es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Corrugation es_ES
dc.subject Dynamic overloads es_ES
dc.subject Finite element method es_ES
dc.subject Vibrations es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Development of a vehicle track interaction model to predict the vibratory benefits of rail grinding in the time domain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40534-015-0078-y
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Real Herráiz, JI.; Zamorano, C.; Velarte, JL.; Blanco, AE. (2015). Development of a vehicle track interaction model to predict the vibratory benefits of rail grinding in the time domain. Journal of Modern Transportation. 23(3):189-201. doi:10.1007/s40534-015-0078-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s40534-015-0078-y es_ES
dc.description.upvformatpinicio 189 es_ES
dc.description.upvformatpfin 201 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 301738 es_ES
dc.description.references Grassie SL, Kalousek J (1993) Rail corrugation: characteristics, causes and treatments. Proc Inst Mech Eng Part F: J Rail Rapid Transit 207:57–68 es_ES
dc.description.references Grassie SL (2005) Rail corrugation: advances in measurement, understanding and treatment. Wear 258:1224–1234 es_ES
dc.description.references Grassie SL (2009) Rail corrugation: characteristics, causes and treatments. Proc Inst Mech Eng Part F: J Rail Rapid Transit 223:581–596 es_ES
dc.description.references Suda Y, Komine H, Iwasa T, Terumichi Y (2002) Experimental study on mechanism of rail corrugation using corrugation simulator. Wear 253:162–171 es_ES
dc.description.references Jin XS, Wen ZF, Wang KY, Zhou ZR, Liu QY, Li CH (2006) Three-dimensional train–track model for study of rail corrugation. J Sound Vib 293(3):830–855 es_ES
dc.description.references Zhao X, Li Z, Esveld C, Dollevoet R (2007) The dynamic stress state of the wheel–rail contact. In: Proceedings of the 2nd IASME/WSEAS international conference on continuum mechanics es_ES
dc.description.references Torstensson P, Nielsen J (2011) Simulation of dynamic vehicle-track interaction on small radius curves. Veh Syst Dyn 49(11):1711–1732 es_ES
dc.description.references Hawari HM, Murray MH (2008) Effects of train characteristics on the rate of deterioration of track roughness. J Eng Mech 134(3):234–239 es_ES
dc.description.references Ling L, Li W, Shang H, Xiao X, Wen Z, Jin X (2014) Experimental and numerical investigation of the effect of rail corrugation on the behaviour of rail fastenings. Veh Syst Dyn 52(9):1211–1231 es_ES
dc.description.references Collette C, Horodinca M, Preumont A (2009) Rotational vibration absorber for the mitigation of rail rutting corrugation. Veh Syst Dyn 47:641–659 es_ES
dc.description.references Egaña J, Viñolas J, Gil-Negrete L (2005) Effect of liquid high positive friction (HPF) modifier on wheel-rail contact and rail corrugation. Tribol Int 38:769–774 es_ES
dc.description.references Real Herraiz JI, Galisteo Cabeza A, Real T, Zamorano Martin C (2012) Study of wave barriers design for the mitigation of railway ground vibrations. J Vibroeng 14(1):408–422 es_ES
dc.description.references Real JI, Zamorano C, Hernandez C, Comendador R, Real T (2014) Computational considerations of 3-D finite element method models of railway vibration prediction in ballasted tracks. J Vibroeng 16(4):1709–1722 es_ES
dc.description.references Andersen L, Jones CJ (2001) Three-dimensional elastodynamic analysis using multiple boundary element domains. ISVR Technical Memorandum, University of Southampton, Southampton es_ES
dc.description.references López Pita A (2006) Infraestructuras Ferroviarias. Universitat Politècnica de Catalunya, Barcelona es_ES
dc.description.references Alves P, Calçada R, Silva A (2011) Vibrations induced by railway traffic: influence of the mechanical properties of the train on the dynamic excitation mechanism. In: Proceedings of the 8th international conference on structural dynamics, EURODYN 2011, Leuven, Belgium es_ES
dc.description.references Ferrara R, Leonardi G, Jourdan F (2012) Numerical modelling of train induced vibrations. In: SIIV-5th international congress—sustainability of road infrastructures, Rome, Italy es_ES
dc.description.references Uzzal RU, Ahmed AK, Bhat RB (2013) Modelling, validation and analysis of a three-dimensional railway vehicle–track system model with linear and nonlinear track properties in the presence of wheel flats. Veh Syst Dyn 51(11):1695–1721 es_ES
dc.description.references Eadie DT, Kalousek J, Chiddick KC (2002) The role of high positive friction (HPF) modifier in the control of short pitch corrugations and related phenomena. Wear 253:185–192 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem