- -

Modelos matemáticos en un problema de epidemias

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modelos matemáticos en un problema de epidemias

Show full item record

Vidal Meló, A.; Boigues Planes, FJ.; Estruch Fuster, VD. (2016). Modelos matemáticos en un problema de epidemias. Modelling in Science Education and Learning. 9(1):73-86. doi:10.4995/msel.2016.4426

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/69779

Files in this item

Item Metadata

Title: Modelos matemáticos en un problema de epidemias
Secondary Title: Mathematical models in a problem of epidemic
Author:
Issued date:
Abstract:
[EN] The introduction of mathematical concepts through the development and the study of models have been addressed in several studies. The introduction of these models is usually done from the professor's ...[+]


[ES] La introducción de conceptos matemáticos a través del desarrollo y estudio de modelos ha sido tratado en numerosos trabajos. La introducción de los modelos suele hacerse básicamente desde el discurso del professor y ...[+]
Subjects: Active methodologies , Mathematical modeling , Metodologías Activas , Modelización Matemática , IBM
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Modelling in Science Education and Learning. (issn: 1988-3145 )
DOI: 10.4995/msel.2016.4426
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/msel.2016.4426
Type: Artículo

References

Amelkin V. (1987) Ciencia popular. Ecuaciones diferenciales aplicadas a la práctica.Mir-Moscú.

Aronson E. & Patnoe S. (1997) The Jigsaw Classroom, Building Cooperation in the Classroom, Longman (second edition), United States .

Brauer F., van den Driessche P. y Wu J. (Ed.) (2008). Mathematical Epidemiology (Lecture Notes in Mathematics / Mathematical Biosciences Subseries). Springer-Verlag. [+]
Amelkin V. (1987) Ciencia popular. Ecuaciones diferenciales aplicadas a la práctica.Mir-Moscú.

Aronson E. & Patnoe S. (1997) The Jigsaw Classroom, Building Cooperation in the Classroom, Longman (second edition), United States .

Brauer F., van den Driessche P. y Wu J. (Ed.) (2008). Mathematical Epidemiology (Lecture Notes in Mathematics / Mathematical Biosciences Subseries). Springer-Verlag.

CHROBAK, J. M., & HERRERO, H. (2011). A MATHEMATICAL MODEL OF INDUCED CANCER-ADAPTIVE IMMUNE SYSTEM COMPETITION. Journal of Biological Systems, 19(03), 521-532. doi:10.1142/s0218339011004111

Grimm, V., & Railsback, S. F. (2005). Individual-based Modeling and Ecology. doi:10.1515/9781400850624

Kermack, W. O., & McKendrick, A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 115(772), 700-721. doi:10.1098/rspa.1927.0118

Nagle R. Kent, Saff Edward B., Snider Arthur D. (2005). Ecuaciones diferenciales y problemas con valores en la frontera. Pearson Educación.

Markham T. (2003). Project Based Learning, a guide to Standard-focused project based. Buck Institute for Education

Railsback, S. F. (2001). Concepts from complex adaptive systems as a framework for individual-based modelling. Ecological Modelling, 139(1), 47-62. doi:10.1016/s0304-3800(01)00228-9

Shannon, R., & Johannes, J. D. (1976). Systems Simulation: The Art and Science. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(10), 723-724. doi:10.1109/tsmc.1976.4309432

Woods D. R. (1994). Problem-based Learning: How to gain the most from PBL, The Book Store, McMaster University, Hamilton.

Zill Dennis G. (2009). Ecuaciones Diferenciales con aplicaciones de modelado. México : Cengage Learning.

[-]

This item appears in the following Collection(s)

Show full item record