- -

Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states

Mostrar el registro completo del ítem

Liu, Y.; Grzywa, M.; Tonigold, M.; Sastre Navarro, GI.; Schuettrigkeit, T.; Leeson, NS.; Volkmer, D. (2011). Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states. Dalton Transactions. 40(22):5926-5938. https://doi.org/10.1039/c0dt01750g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/70151

Ficheros en el ítem

Metadatos del ítem

Título: Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states
Autor: Liu, Ying-Ya Grzywa, Maciej Tonigold, Markus Sastre Navarro, German Ignacio Schuettrigkeit, Tanja Leeson, Nicholas S. Volkmer, Dirk
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
The syntheses of Kuratowski-type pentanuclear clusters featuring {MZn4Cl4} cores (M-II = Ru or Zn) that incorporate triazolate ligands are described. The coordination compounds are characterized by single-crystal X-ray ...[+]
Palabras clave: ZETA-VALENCE QUALITY , GENERALIZED GRADIENT APPROXIMATION , GAUSSIAN-BASIS SETS , RUTHENIUM(II) COMPLEXES , CORRELATION-ENERGY , ADJUSTABLE-PARAMETERS , TRINUCLEAR COMPLEXES , CRYSTAL-STRUCTURE , REDOX PROPERTIES , D-ORBITALS
Derechos de uso: Cerrado
Fuente:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/c0dt01750g
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c0dt01750g
Código del Proyecto:
info:eu-repo/grantAgreement/DFG//VO 829%2F5-1/
info:eu-repo/grantAgreement/MEC//MAT2007-64682/ES/ADSORCION Y CATALISIS EN SOLIDOS POROSOS METAL-ORGANICOS POR METODOS QUIMICO-COMPUTACIONALES/
Agradecimientos:
Financial support from the German Research Foundation (DFG Priority Program 1362 "Porous Metal-Organic Frameworks", VO 829/5-1) is gratefully acknowledged. M.T. is grateful to the Landesgraduiertenforderung Baden-Wurttemberg ...[+]
Tipo: Artículo

References

Shaw, R., Laye, R. H., Jones, L. F., Low, D. M., Talbot-Eeckelaers, C., Wei, Q., … McInnes, E. J. L. (2007). 1,2,3-Triazolate-Bridged Tetradecametallic Transition Metal Clusters [M14(L)6O6(OMe)18X6] (M = FeIII, CrIIIand VIII/IV) and Related Compounds:  Ground-State Spins Ranging fromS= 0 toS= 25 and Spin-Enhanced Magnetocaloric Effect. Inorganic Chemistry, 46(12), 4968-4978. doi:10.1021/ic070320k

Tekarli, S. M., Cundari, T. R., & Omary, M. A. (2008). Rational Design of Macrometallocyclic Trinuclear Complexes with Superior π-Acidity and π-Basicity. Journal of the American Chemical Society, 130(5), 1669-1675. doi:10.1021/ja076527u

Zhang, J.-P., Lin, Y.-Y., Huang, X.-C., & Chen, X.-M. (2005). Copper(I) 1,2,4-Triazolates and Related Complexes:  Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties. Journal of the American Chemical Society, 127(15), 5495-5506. doi:10.1021/ja042222t [+]
Shaw, R., Laye, R. H., Jones, L. F., Low, D. M., Talbot-Eeckelaers, C., Wei, Q., … McInnes, E. J. L. (2007). 1,2,3-Triazolate-Bridged Tetradecametallic Transition Metal Clusters [M14(L)6O6(OMe)18X6] (M = FeIII, CrIIIand VIII/IV) and Related Compounds:  Ground-State Spins Ranging fromS= 0 toS= 25 and Spin-Enhanced Magnetocaloric Effect. Inorganic Chemistry, 46(12), 4968-4978. doi:10.1021/ic070320k

Tekarli, S. M., Cundari, T. R., & Omary, M. A. (2008). Rational Design of Macrometallocyclic Trinuclear Complexes with Superior π-Acidity and π-Basicity. Journal of the American Chemical Society, 130(5), 1669-1675. doi:10.1021/ja076527u

Zhang, J.-P., Lin, Y.-Y., Huang, X.-C., & Chen, X.-M. (2005). Copper(I) 1,2,4-Triazolates and Related Complexes:  Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties. Journal of the American Chemical Society, 127(15), 5495-5506. doi:10.1021/ja042222t

Rocha, R. C., & Toma, H. E. (2003). Intervalence, electron transfer and redox properties of a triazolate-bridged ruthenium-polypyridine dinuclear complex. Polyhedron, 22(10), 1303-1313. doi:10.1016/s0277-5387(03)00105-0

Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J., & Meyer, T. J. (2008). Observation of Three Intervalence-Transfer Bands for a Class II–III Mixed-Valence Complex of Ruthenium. Angewandte Chemie International Edition, 47(3), 503-506. doi:10.1002/anie.200702760

Struthers, H., Spingler, B., Mindt, T. L., & Schibli, R. (2008). «Click‐to‐Chelate»: Design and Incorporation of Triazole‐Containing Metal‐Chelating Systems into Biomolecules of Diagnostic and Therapeutic Interest. Chemistry - A European Journal, 14(20), 6173-6183. doi:10.1002/chem.200702024

Jernigan, F. E., Sieracki, N. A., Taylor, M. T., Jenkins, A. S., Engel, S. E., Rowe, B. W., … Ferrence, G. M. (2007). Sterically Bulky Tris(triazolyl)borate Ligands as Water-Soluble Analogues of Tris(pyrazolyl)borate. Inorganic Chemistry, 46(2), 360-362. doi:10.1021/ic061828a

Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J., & Liu, M. (2004). Syntheses, crystal structures, and oxidative DNA cleavage of some Cu(II) complexes of 5-amino-3-pyridin-2-yl-1,2,4-triazole. Journal of Inorganic Biochemistry, 98(8), 1436-1446. doi:10.1016/j.jinorgbio.2004.05.004

Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., … Yano, S. (2008). Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(i) complexes. Dalton Transactions, (25), 3292. doi:10.1039/b718538c

Schweinfurth, D., Pattacini, R., Strobel, S., & Sarkar, B. (2009). New 1,2,3-triazole ligands through click reactions and their palladium and platinum complexes. Dalton Transactions, (42), 9291. doi:10.1039/b910660j

Potts, K. T. (1961). The Chemistry of 1,2,4-Triazoles. Chemical Reviews, 61(2), 87-127. doi:10.1021/cr60210a001

Richardson, C., & Steel, P. J. (2003). Benzotriazole as a structural component in chelating and bridging heterocyclic ligands; ruthenium, palladium, copper and silver complexes. Dalton Transactions, (5), 992-1000. doi:10.1039/b206990c

Rocha, R. C., & Toma, H. E. (2003). Transition Metal Chemistry, 28(1), 43-50. doi:10.1023/a:1022510505110

Rocha, R. C., & Toma, H. E. (2000). Asymmetric mixed-valence binuclear ruthenium complexes containing benzotriazolate or benzimidazolate bridging ligands. Inorganica Chimica Acta, 310(1), 65-80. doi:10.1016/s0020-1693(00)00270-x

Rocha, R. C., & Toma, H. E. (2002). Benzotriazolate-bridged ruthenium dinuclear and trinuclear complexes. Polyhedron, 21(21), 2089-2098. doi:10.1016/s0277-5387(02)01135-x

Felici, M., Contreras-Carballada, P., Vida, Y., Smits, J. M. â M., Nolte, R. J. â M., Deâ Cola, L., … Feiters, M. (2009). IrIIIand RuIIComplexes Containing Triazole-Pyridine Ligands: Luminescence Enhancement upon Substitution with β-Cyclodextrin. Chemistry - A European Journal, 15(47), 13124-13134. doi:10.1002/chem.200901582

Schulze, B., Friebe, C., Hager, M. D., Winter, A., Hoogenboom, R., Görls, H., & Schubert, U. S. (2009). 2,2′:6′,2″-Terpyridine meets 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine: tuning the electro-optical properties of ruthenium(ii) complexes. Dalton Trans., (5), 787-794. doi:10.1039/b813925c

Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., Weil, M., & Volkmer, D. (2010). Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn4Cl4(L)6] (MII= Zn, Fe, Co, Ni, or Cu; L = 5,6-Dimethyl-1,2,3-benzotriazolate) Represented by the NonplanarK3,3Graph. Inorganic Chemistry, 49(16), 7424-7434. doi:10.1021/ic100749k

Biswas, S., Tonigold, M., & Volkmer, D. (2008). Homo- and Heteropentanuclear Coordination Compounds withTdSymmetry - the Solid State Structures of [MZn4(L)4(L′)6] (M = CoIIor Zn; L = chloride or acac; L′ = 1,2,3-benzotriazolate). Zeitschrift für anorganische und allgemeine Chemie, 634(14), 2532-2538. doi:10.1002/zaac.200800296

Yuan, Y.-X., Wei, P.-J., Qin, W., Zhang, Y., Yao, J.-L., & Gu, R.-A. (2007). Combined Studies on the Surface Coordination Chemistry of Benzotriazole at the Copper Electrode by Direct Electrochemical Synthesis and Surface-Enhanced Raman Spectroscopy. European Journal of Inorganic Chemistry, 2007(31), 4980-4987. doi:10.1002/ejic.200700436

Bai, Y., Tao, J., Huang, R., & Zheng, L. (2008). The Designed Assembly of Augmented Diamond Networks From Predetermined Pentanuclear Tetrahedral Units. Angewandte Chemie International Edition, 47(29), 5344-5347. doi:10.1002/anie.200800403

Handley, J., Collison, D., Garner, C. D., Helliwell, M., Docherty, R., Lawson, J. R., & Tasker, P. A. (1993). Hexakis(benzotriazolato)tetrakis(2,4-pentanedionato)pentacopper(II): A Model for Corrosion Inhibition. Angewandte Chemie International Edition in English, 32(7), 1036-1038. doi:10.1002/anie.199310361

Murrie, M., Collison, D., Garner, C. D., Helliwell, M., Tasker, P. A., & Turner, S. S. (1998). Synthesis structure magnetic properties of [Cu5(bta)6L4] (bta=benzotriazolate;L=β-diketonate) Clusters. Polyhedron, 17(17), 3031-3043. doi:10.1016/s0277-5387(98)00161-2

Kokoszka, G. F., Baranowski, J., Goldstein, C., Orsini, J., Mighell, A. D., Himes, V. L., & Siedle, A. R. (1983). Two-dimensional dynamical Jahn-Teller effects in a mixed-valence benzotriazolato copper cluster, Cu5(BTA)6(RNC)4. Journal of the American Chemical Society, 105(17), 5627-5633. doi:10.1021/ja00355a017

Biswas, S., Grzywa, M., Nayek, H. P., Dehnen, S., Senkovska, I., Kaskel, S., & Volkmer, D. (2009). A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, (33), 6487. doi:10.1039/b904280f

Denysenko, D., Grzywa, M., Tonigold, M., Streppel, B., Krkljus, I., Hirscher, M., … Volkmer, D. (2011). Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 17(6), 1837-1848. doi:10.1002/chem.201001872

Kuratowski, C. (1930). Sur le problème des courbes gauches en Topologie. Fundamenta Mathematicae, 15, 271-283. doi:10.4064/fm-15-1-271-283

Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., & Volkmer, D. (2009). Nonanuclear Coordination Compounds Featuring {M9L12}6+Cores (M = NiII, CoII, or ZnII; L = 1,2,3-Benzotriazolate). European Journal of Inorganic Chemistry, 2009(21), 3094-3101. doi:10.1002/ejic.200900156

Biswas, S., Tonigold, M., Kelm, H., Krüger, H.-J., & Volkmer, D. (2010). Thermal spin-crossover in the [M3Zn6Cl6L12] (M = Zn, FeII; L = 5,6-dimethoxy-1,2,3-benzotriazolate) system: structural, electrochemical, Mössbauer, and UV-Vis spectroscopic studies. Dalton Transactions, 39(41), 9851. doi:10.1039/c0dt00556h

Wang, X.-L., Qin, C., Wu, S.-X., Shao, K.-Z., Lan, Y.-Q., Wang, S., … Wang, E.-B. (2009). Bottom-Up Synthesis of Porous Coordination Frameworks: Apical Substitution of a Pentanuclear Tetrahedral Precursor. Angewandte Chemie International Edition, 48(29), 5291-5295. doi:10.1002/anie.200902274

Vlček, A., & Záliš, S. (2007). Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coordination Chemistry Reviews, 251(3-4), 258-287. doi:10.1016/j.ccr.2006.05.021

Evans, I. P., Spencer, A., & Wilkinson, G. (1973). Dichlorotetrakis(dimethyl sulphoxide)ruthenium(II) and its use as a source material for some new ruthenium(II) complexes. Journal of the Chemical Society, Dalton Transactions, (2), 204. doi:10.1039/dt9730000204

Anzellotti, A., & Briceño, A. (2001). Hexakis(acetonitrile)ruthenium(II) tetrachlorozincate 2.55-hydrate. Acta Crystallographica Section E Structure Reports Online, 57(11), m538-m540. doi:10.1107/s1600536801017469

Reisner, E., Arion, V. B., Rufińska, A., Chiorescu, I., Schmid, W. F., & Keppler, B. K. (2005). Isomeric [RuCl2(dmso)2(indazole)2] complexes: ruthenium(ii)-mediated coupling reaction of acetonitrile with 1H-indazole. Dalton Transactions, (14), 2355. doi:10.1039/b503650j

Duati, M., Tasca, S., Lynch, F. C., Bohlen, H., Vos, J. G., Stagni, S., & Ward, M. D. (2003). Enhancement of Luminescence Lifetimes of Mononuclear Ruthenium(II)−Terpyridine Complexes by Manipulation of the σ-Donor Strength of Ligands. Inorganic Chemistry, 42(25), 8377-8384. doi:10.1021/ic034691m

Stagni, S., Orselli, E., Palazzi, A., De Cola, L., Zacchini, S., Femoni, C., … Zanarini, S. (2007). Polypyridyl Ruthenium(II) Complexes with Tetrazolate-Based Chelating Ligands. Synthesis, Reactivity, and Electrochemical and Photophysical Properties. Inorganic Chemistry, 46(22), 9126-9138. doi:10.1021/ic7011556

Giuffrida, G., Calogero, G., Guglielmo, G., Ricevuto, V., Ciano, M., & Campagna, S. (1993). Mono- and dinuclear complexes of ruthenium(II) and osmium(II) with a 3,5-bis(2-pyridyl)-1,2,4-triazole cyclohexyl-bridged spacer. Absorption spectra, luminescence properties, and electrochemical behavior. Inorganic Chemistry, 32(7), 1179-1183. doi:10.1021/ic00059a025

Araki, K., Rein, F. N., Camera, S. G., & Toma, H. E. (1992). Spectroelectrochemical and kinetic behaviour of the [Ru(edta)-(diethyldithiocarbamate)] complex. Transition Metal Chemistry, 17(6), 535-538. doi:10.1007/bf02910752

Alessio, E., Balducci, G., Lutman, A., Mestroni, G., Calligaris, M., & Attia, W. M. (1993). Synthesis and characterization of two new classes of ruthenium(III)-sulfoxide complexes with nitrogen donor ligands (L): Na[trans-RuCl4(R2SO)(L)] and mer, cis-RuCl3(R2SO)(R2SO)(L). The crystal structure of Na[trans-RuCl4(DMSO)(NH3)] · 2DMSO, Na[trans-RuCl4(DMSO)(Im)] · H2O, Me2CO (Im = imidazole) and mer, cis-RuCl3(DMSO)(DMSO)(NH3). Inorganica Chimica Acta, 203(2), 205-217. doi:10.1016/s0020-1693(00)81659-x

Ahlrichs, R., Bär, M., Häser, M., Horn, H., & Kölmel, C. (1989). Electronic structure calculations on workstation computers: The program system turbomole. Chemical Physics Letters, 162(3), 165-169. doi:10.1016/0009-2614(89)85118-8

Thiel, W., & Voityuk, A. A. (1992). Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica Chimica Acta, 81(6), 391-404. doi:10.1007/bf01134863

Thiel, W., & Voityuk, A. A. (1996). Extension of MNDO to d Orbitals:  Parameters and Results for the Second-Row Elements and for the Zinc Group. The Journal of Physical Chemistry, 100(2), 616-626. doi:10.1021/jp952148o

Becke, A. D. (1996). Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. The Journal of Chemical Physics, 104(3), 1040-1046. doi:10.1063/1.470829

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785

Perdew, J. P. (1986). Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 33(12), 8822-8824. doi:10.1103/physrevb.33.8822

Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671-6687. doi:10.1103/physrevb.46.6671

Hamprecht, F. A., Cohen, A. J., Tozer, D. J., & Handy, N. C. (1998). Development and assessment of new exchange-correlation functionals. The Journal of Chemical Physics, 109(15), 6264-6271. doi:10.1063/1.477267

Wilson, P. J., Bradley, T. J., & Tozer, D. J. (2001). Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials. The Journal of Chemical Physics, 115(20), 9233-9242. doi:10.1063/1.1412605

Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/physreva.38.3098

Adamo, C., & Barone, V. (1998). Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. The Journal of Chemical Physics, 108(2), 664-675. doi:10.1063/1.475428

Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522

Schmider, H. L., & Becke, A. D. (1998). Optimized density functionals from the extended G2 test set. The Journal of Chemical Physics, 108(23), 9624-9631. doi:10.1063/1.476438

Van Voorhis, T., & Scuseria, G. E. (1998). A novel form for the exchange-correlation energy functional. The Journal of Chemical Physics, 109(2), 400-410. doi:10.1063/1.476577

Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 98(2), 1372-1377. doi:10.1063/1.464304

Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized gradient approximation functionals. The Journal of Chemical Physics, 114(13), 5497-5503. doi:10.1063/1.1347371

Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a

Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146

Eichkorn, K., Weigend, F., Treutler, O., & Ahlrichs, R. (1997). Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 97(1-4), 119-124. doi:10.1007/s002140050244

Weigend, F., Furche, F., & Ahlrichs, R. (2003). Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. The Journal of Chemical Physics, 119(24), 12753-12762. doi:10.1063/1.1627293

Andrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537

Borin, A. C., Serrano-Andrés, L., Ludwig, V., & Canuto, S. (2003). Theoretical absorption and emission spectra of 1H- and 2H-benzotriazole. Phys. Chem. Chem. Phys., 5(22), 5001-5009. doi:10.1039/b310702g

Tomas, F., Catalan, J., Perez, P., & Elguero, J. (1994). Influence of Lone Pair Repulsion vs Resonance Energy on the Relative Stabilities of Molecular Structures: A Theoretical Approach to the Equilibrium between 1H- and 2H-Benzotriazole Tautomers. The Journal of Organic Chemistry, 59(10), 2799-2802. doi:10.1021/jo00089a026

SEYBOLD, P. G., GOUTERMAN, M., & CALLIS, J. (1969). CALORIMETRIC, PHOTOMETRIC AND LIFETIME DETERMINATIONS OF FLUORESCENCE YIELDS OF FLUORESCEIN DYES. Photochemistry and Photobiology, 9(3), 229-242. doi:10.1111/j.1751-1097.1969.tb07287.x

Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G., & Balzani, V. (s. f.). Photochemistry and Photophysics of Coordination Compounds: Ruthenium. Topics in Current Chemistry, 117-214. doi:10.1007/128_2007_133

Blessing, R. H. (1995). An empirical correction for absorption anisotropy. Acta Crystallographica Section A Foundations of Crystallography, 51(1), 33-38. doi:10.1107/s0108767394005726

Spek, A. L. (2003). Single-crystal structure validation with the programPLATON. Journal of Applied Crystallography, 36(1), 7-13. doi:10.1107/s0021889802022112

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem