Kotrel, S., Knözinger, H., & Gates, B. C. (2000). The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous and Mesoporous Materials, 35-36, 11-20. doi:10.1016/s1387-1811(99)00204-8
Haag, W. O. (1994). Catalysis by Zeolites – Science and Technology. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 1375-1394. doi:10.1016/s0167-2991(08)63680-0
Narbeshuber, T. F., Vinek, H., & Lercher, J. A. (1995). Monomolecular Conversion of Light Alkanes over H-ZSM-5. Journal of Catalysis, 157(2), 388-395. doi:10.1006/jcat.1995.1304
[+]
Kotrel, S., Knözinger, H., & Gates, B. C. (2000). The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous and Mesoporous Materials, 35-36, 11-20. doi:10.1016/s1387-1811(99)00204-8
Haag, W. O. (1994). Catalysis by Zeolites – Science and Technology. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 1375-1394. doi:10.1016/s0167-2991(08)63680-0
Narbeshuber, T. F., Vinek, H., & Lercher, J. A. (1995). Monomolecular Conversion of Light Alkanes over H-ZSM-5. Journal of Catalysis, 157(2), 388-395. doi:10.1006/jcat.1995.1304
Babitz, S. M., Williams, B. A., Miller, J. T., Snurr, R. Q., Haag, W. O., & Kung, H. . (1999). Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Applied Catalysis A: General, 179(1-2), 71-86. doi:10.1016/s0926-860x(98)00301-9
Van Bokhoven, J. A., Williams, B. A., Ji, W., Koningsberger, D. C., Kung, H. H., & Miller, J. T. (2004). Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption. Journal of Catalysis, 224(1), 50-59. doi:10.1016/j.jcat.2004.02.003
XU, B., SIEVERS, C., HONG, S., PRINS, R., & VANBOKHOVEN, J. (2006). Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. Journal of Catalysis, 244(2), 163-168. doi:10.1016/j.jcat.2006.08.022
Niwa, M., Nishikawa, S., & Katada, N. (2005). IRMS–TPD of ammonia for characterization of acid site in β-zeolite. Microporous and Mesoporous Materials, 82(1-2), 105-112. doi:10.1016/j.micromeso.2005.03.002
SUZUKI, K., NODA, T., KATADA, N., & NIWA, M. (2007). IRMS-TPD of ammonia: Direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity. Journal of Catalysis, 250(1), 151-160. doi:10.1016/j.jcat.2007.05.024
Niwa, M., Suzuki, K., Isamoto, K., & Katada, N. (2006). Identification and Measurements of Strong Brønsted Acid Site in Ultrastable Y (USY) Zeolite. The Journal of Physical Chemistry B, 110(1), 264-269. doi:10.1021/jp054442e
Katada, N., Suzuki, K., Noda, T., Miyatani, W., Taniguchi, F., & Niwa, M. (2010). Correlation of the cracking activity with solid acidity and adsorption property on zeolites. Applied Catalysis A: General, 373(1-2), 208-213. doi:10.1016/j.apcata.2009.11.022
Swisher, J. A., Hansen, N., Maesen, T., Keil, F. J., Smit, B., & Bell, A. T. (2010). Theoretical Simulation of n-Alkane Cracking on Zeolites. The Journal of Physical Chemistry C, 114(22), 10229-10239. doi:10.1021/jp101262y
Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037
Elanany, M., Koyama, M., Kubo, M., Selvam, P., & Miyamoto, A. (2004). Periodic density functional investigation of Brønsted acidity in isomorphously substituted chabazite and AlPO-34 molecular sieves. Microporous and Mesoporous Materials, 71(1-3), 51-56. doi:10.1016/j.micromeso.2004.03.018
Rosenbach Jr., N., & Mota, C. J. A. (2008). A DFT–ONIOM study on the effect of extra-framework aluminum on USY zeolite acidity. Applied Catalysis A: General, 336(1-2), 54-60. doi:10.1016/j.apcata.2007.09.048
VANSANTEN, R. (1997). Quantum-chemistry of zeolite acidity. Catalysis Today, 38(3), 377-390. doi:10.1016/s0920-5861(97)81505-0
Chu, Y., Han, B., Fang, H., Zheng, A., & Deng, F. (2012). Influence of acid strength on the reactivity of alkane activation on solid acid catalysts: A theoretical calculation study. Microporous and Mesoporous Materials, 151, 241-249. doi:10.1016/j.micromeso.2011.10.030
Macht, J., Carr, R. T., & Iglesia, E. (2009). Consequences of Acid Strength for Isomerization and Elimination Catalysis on Solid Acids. Journal of the American Chemical Society, 131(18), 6554-6565. doi:10.1021/ja900829x
Gounder, R., & Iglesia, E. (2011). The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 45(2), 229-238. doi:10.1021/ar200138n
Hamprecht, F. A., Cohen, A. J., Tozer, D. J., & Handy, N. C. (1998). Development and assessment of new exchange-correlation functionals. The Journal of Chemical Physics, 109(15), 6264-6271. doi:10.1063/1.477267
Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized gradient approximation functionals. The Journal of Chemical Physics, 114(13), 5497-5503. doi:10.1063/1.1347371
Reiher, M. (2006). Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry. Theoretical Chemistry Accounts, 116(1-3), 241-252. doi:10.1007/s00214-005-0003-2
Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0
Kresse, G., & Hafner, J. (1994). Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 6(40), 8245-8257. doi:10.1088/0953-8984/6/40/015
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406
Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495
Bučko, T., Hafner, J., Lebègue, S., & Ángyán, J. G. (2010). Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections. The Journal of Physical Chemistry A, 114(43), 11814-11824. doi:10.1021/jp106469x
Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953
Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758
Sastre, G., Katada, N., Suzuki, K., & Niwa, M. (2008). Computational Study of Brønsted Acidity of Faujasite. Effect of the Al Content on the Infrared OH Stretching Frequencies. The Journal of Physical Chemistry C, 112(49), 19293-19301. doi:10.1021/jp807623m
Suzuki, K., Noda, T., Sastre, G., Katada, N., & Niwa, M. (2009). Periodic Density Functional Calculation on the Brønsted Acidity of Modified Y-Type Zeolite. The Journal of Physical Chemistry C, 113(14), 5672-5680. doi:10.1021/jp8104562
Frising, T., & Leflaive, P. (2008). Extraframework cation distributions in X and Y faujasite zeolites: A review. Microporous and Mesoporous Materials, 114(1-3), 27-63. doi:10.1016/j.micromeso.2007.12.024
Grajciar, L., Areán, C. O., Pulido, A., & Nachtigall, P. (2010). Periodic DFT investigation of the effect of aluminium content on the properties of the acid zeolite H-FER. Physical Chemistry Chemical Physics, 12(7), 1497. doi:10.1039/b917969k
Suzuki, K., Katada, N., & Niwa, M. (2007). Detection and Quantitative Measurements of Four Kinds of OH in HY Zeolite. The Journal of Physical Chemistry C, 111(2), 894-900. doi:10.1021/jp065054v
NODA, T., SUZUKI, K., KATADA, N., & NIWA, M. (2008). Combined study of IRMS-TPD measurement and DFT calculation on Brønsted acidity and catalytic cracking activity of cation-exchanged Y zeolites. Journal of Catalysis, 259(2), 203-210. doi:10.1016/j.jcat.2008.08.004
Olah, G. A., Prakash, G. K. S., & Sommer, J. (1979). Superacids. Science, 206(4414), 13-20. doi:10.1126/science.206.4414.13
East, A. L. L., Liu, Z. F., McCague, C., Cheng, K., & Tse, J. S. (1998). The Three Isomers of Protonated Ethane, C2H7+. The Journal of Physical Chemistry A, 102(52), 10903-10911. doi:10.1021/jp983640l
Esteves, P. M., Mota, C. J. A., Ramírez-Solís, A., & Hernández-Lamoneda, R. (1998). Potential Energy Surface of the C3H9+Cations. Protonated Propane. Journal of the American Chemical Society, 120(13), 3213-3219. doi:10.1021/ja973784y
Esteves, P. M., Alberto, G. G. P., Ramírez-Solís, A., & Mota, C. J. A. (2000). Then-Butonium Cation (n-C4H11+): The Potential Energy Surface of Protonatedn-Butane. The Journal of Physical Chemistry A, 104(26), 6233-6240. doi:10.1021/jp001152j
Hunter, K. C., & East, A. L. L. (2002). Properties of C−C Bonds inn-Alkanes: Relevance to Cracking Mechanisms. The Journal of Physical Chemistry A, 106(7), 1346-1356. doi:10.1021/jp0129030
Okumura, K., Tomiyama, T., Morishita, N., Sanada, T., Kamiguchi, K., Katada, N., & Niwa, M. (2011). Evolution of strong acidity and high-alkane-cracking activity in ammonium-treated USY zeolites. Applied Catalysis A: General, 405(1-2), 8-17. doi:10.1016/j.apcata.2011.07.007
Katada, N. (2004). Acidic property of modified ultra stable Y zeolite: increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt. Journal of Molecular Catalysis A: Chemical, 211(1-2), 119-130. doi:10.1016/j.molcata.2003.10.001
Katada, N., Suzuki, K., Noda, T., Sastre, G., & Niwa, M. (2009). Correlation between Brønsted Acid Strength and Local Structure in Zeolites. The Journal of Physical Chemistry C, 113(44), 19208-19217. doi:10.1021/jp903788n
Michaelides, A., Liu, Z.-P., Zhang, C. J., Alavi, A., King, D. A., & Hu, P. (2003). Identification of General Linear Relationships between Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces. Journal of the American Chemical Society, 125(13), 3704-3705. doi:10.1021/ja027366r
[-]