Mostrar el registro sencillo del ítem
dc.contributor.author | Niwa, M. | es_ES |
dc.contributor.author | Suzuki, Kiwa | es_ES |
dc.contributor.author | Morishita, N. | es_ES |
dc.contributor.author | Sastre Navarro, German Ignacio | es_ES |
dc.contributor.author | Okumura, K. | es_ES |
dc.contributor.author | Katada, N. | es_ES |
dc.date.accessioned | 2016-09-28T06:48:03Z | |
dc.date.available | 2016-09-28T06:48:03Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 2044-4753 | |
dc.identifier.uri | http://hdl.handle.net/10251/70527 | |
dc.description.abstract | [EN] Dependence of the activity for alkane cracking on the Bronsted acidity of HY and cation exchanged HY zeolites was clearly revealed by the periodic DFT calculation and the experimental confirmation. | es_ES |
dc.description.sponsorship | The present work is supported by the Grant-in-Aids for Scientific Research (B) (21360396) and (B) (23360358) from Ministry of Education, Culture, Sports, Science and Technology, Japan. G.S. thanks the Spanish government for the provision of the excellence programme "Severo Ochoa" (project SEV 2012 0267). | |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Catalysis Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C3CY00195D | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEXT//21360396/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEXT//23360358/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Niwa, M.; Suzuki, K.; Morishita, N.; Sastre Navarro, GI.; Okumura, K.; Katada, N. (2013). Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation. Catalysis Science and Technology. 3(8):1919-1927. https://doi.org/10.1039/C3CY00195D | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3cy00195d | es_ES |
dc.description.upvformatpinicio | 1919 | es_ES |
dc.description.upvformatpfin | 1927 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 261094 | es_ES |
dc.contributor.funder | Ministry of Education, Culture, Sports, Science and Technology, Japón | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kotrel, S., Knözinger, H., & Gates, B. C. (2000). The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous and Mesoporous Materials, 35-36, 11-20. doi:10.1016/s1387-1811(99)00204-8 | es_ES |
dc.description.references | Haag, W. O. (1994). Catalysis by Zeolites – Science and Technology. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 1375-1394. doi:10.1016/s0167-2991(08)63680-0 | es_ES |
dc.description.references | Narbeshuber, T. F., Vinek, H., & Lercher, J. A. (1995). Monomolecular Conversion of Light Alkanes over H-ZSM-5. Journal of Catalysis, 157(2), 388-395. doi:10.1006/jcat.1995.1304 | es_ES |
dc.description.references | Babitz, S. M., Williams, B. A., Miller, J. T., Snurr, R. Q., Haag, W. O., & Kung, H. . (1999). Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Applied Catalysis A: General, 179(1-2), 71-86. doi:10.1016/s0926-860x(98)00301-9 | es_ES |
dc.description.references | Van Bokhoven, J. A., Williams, B. A., Ji, W., Koningsberger, D. C., Kung, H. H., & Miller, J. T. (2004). Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption. Journal of Catalysis, 224(1), 50-59. doi:10.1016/j.jcat.2004.02.003 | es_ES |
dc.description.references | XU, B., SIEVERS, C., HONG, S., PRINS, R., & VANBOKHOVEN, J. (2006). Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. Journal of Catalysis, 244(2), 163-168. doi:10.1016/j.jcat.2006.08.022 | es_ES |
dc.description.references | Niwa, M., Nishikawa, S., & Katada, N. (2005). IRMS–TPD of ammonia for characterization of acid site in β-zeolite. Microporous and Mesoporous Materials, 82(1-2), 105-112. doi:10.1016/j.micromeso.2005.03.002 | es_ES |
dc.description.references | SUZUKI, K., NODA, T., KATADA, N., & NIWA, M. (2007). IRMS-TPD of ammonia: Direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity. Journal of Catalysis, 250(1), 151-160. doi:10.1016/j.jcat.2007.05.024 | es_ES |
dc.description.references | Niwa, M., Suzuki, K., Isamoto, K., & Katada, N. (2006). Identification and Measurements of Strong Brønsted Acid Site in Ultrastable Y (USY) Zeolite. The Journal of Physical Chemistry B, 110(1), 264-269. doi:10.1021/jp054442e | es_ES |
dc.description.references | Katada, N., Suzuki, K., Noda, T., Miyatani, W., Taniguchi, F., & Niwa, M. (2010). Correlation of the cracking activity with solid acidity and adsorption property on zeolites. Applied Catalysis A: General, 373(1-2), 208-213. doi:10.1016/j.apcata.2009.11.022 | es_ES |
dc.description.references | Swisher, J. A., Hansen, N., Maesen, T., Keil, F. J., Smit, B., & Bell, A. T. (2010). Theoretical Simulation of n-Alkane Cracking on Zeolites. The Journal of Physical Chemistry C, 114(22), 10229-10239. doi:10.1021/jp101262y | es_ES |
dc.description.references | Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037 | es_ES |
dc.description.references | Elanany, M., Koyama, M., Kubo, M., Selvam, P., & Miyamoto, A. (2004). Periodic density functional investigation of Brønsted acidity in isomorphously substituted chabazite and AlPO-34 molecular sieves. Microporous and Mesoporous Materials, 71(1-3), 51-56. doi:10.1016/j.micromeso.2004.03.018 | es_ES |
dc.description.references | Rosenbach Jr., N., & Mota, C. J. A. (2008). A DFT–ONIOM study on the effect of extra-framework aluminum on USY zeolite acidity. Applied Catalysis A: General, 336(1-2), 54-60. doi:10.1016/j.apcata.2007.09.048 | es_ES |
dc.description.references | VANSANTEN, R. (1997). Quantum-chemistry of zeolite acidity. Catalysis Today, 38(3), 377-390. doi:10.1016/s0920-5861(97)81505-0 | es_ES |
dc.description.references | Chu, Y., Han, B., Fang, H., Zheng, A., & Deng, F. (2012). Influence of acid strength on the reactivity of alkane activation on solid acid catalysts: A theoretical calculation study. Microporous and Mesoporous Materials, 151, 241-249. doi:10.1016/j.micromeso.2011.10.030 | es_ES |
dc.description.references | Macht, J., Carr, R. T., & Iglesia, E. (2009). Consequences of Acid Strength for Isomerization and Elimination Catalysis on Solid Acids. Journal of the American Chemical Society, 131(18), 6554-6565. doi:10.1021/ja900829x | es_ES |
dc.description.references | Gounder, R., & Iglesia, E. (2011). The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 45(2), 229-238. doi:10.1021/ar200138n | es_ES |
dc.description.references | Hamprecht, F. A., Cohen, A. J., Tozer, D. J., & Handy, N. C. (1998). Development and assessment of new exchange-correlation functionals. The Journal of Chemical Physics, 109(15), 6264-6271. doi:10.1063/1.477267 | es_ES |
dc.description.references | Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized gradient approximation functionals. The Journal of Chemical Physics, 114(13), 5497-5503. doi:10.1063/1.1347371 | es_ES |
dc.description.references | Reiher, M. (2006). Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry. Theoretical Chemistry Accounts, 116(1-3), 241-252. doi:10.1007/s00214-005-0003-2 | es_ES |
dc.description.references | Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0 | es_ES |
dc.description.references | Kresse, G., & Hafner, J. (1994). Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 6(40), 8245-8257. doi:10.1088/0953-8984/6/40/015 | es_ES |
dc.description.references | Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 | es_ES |
dc.description.references | Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 | es_ES |
dc.description.references | Bučko, T., Hafner, J., Lebègue, S., & Ángyán, J. G. (2010). Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections. The Journal of Physical Chemistry A, 114(43), 11814-11824. doi:10.1021/jp106469x | es_ES |
dc.description.references | Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 | es_ES |
dc.description.references | Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 | es_ES |
dc.description.references | Sastre, G., Katada, N., Suzuki, K., & Niwa, M. (2008). Computational Study of Brønsted Acidity of Faujasite. Effect of the Al Content on the Infrared OH Stretching Frequencies. The Journal of Physical Chemistry C, 112(49), 19293-19301. doi:10.1021/jp807623m | es_ES |
dc.description.references | Suzuki, K., Noda, T., Sastre, G., Katada, N., & Niwa, M. (2009). Periodic Density Functional Calculation on the Brønsted Acidity of Modified Y-Type Zeolite. The Journal of Physical Chemistry C, 113(14), 5672-5680. doi:10.1021/jp8104562 | es_ES |
dc.description.references | Frising, T., & Leflaive, P. (2008). Extraframework cation distributions in X and Y faujasite zeolites: A review. Microporous and Mesoporous Materials, 114(1-3), 27-63. doi:10.1016/j.micromeso.2007.12.024 | es_ES |
dc.description.references | Grajciar, L., Areán, C. O., Pulido, A., & Nachtigall, P. (2010). Periodic DFT investigation of the effect of aluminium content on the properties of the acid zeolite H-FER. Physical Chemistry Chemical Physics, 12(7), 1497. doi:10.1039/b917969k | es_ES |
dc.description.references | Suzuki, K., Katada, N., & Niwa, M. (2007). Detection and Quantitative Measurements of Four Kinds of OH in HY Zeolite. The Journal of Physical Chemistry C, 111(2), 894-900. doi:10.1021/jp065054v | es_ES |
dc.description.references | NODA, T., SUZUKI, K., KATADA, N., & NIWA, M. (2008). Combined study of IRMS-TPD measurement and DFT calculation on Brønsted acidity and catalytic cracking activity of cation-exchanged Y zeolites. Journal of Catalysis, 259(2), 203-210. doi:10.1016/j.jcat.2008.08.004 | es_ES |
dc.description.references | Olah, G. A., Prakash, G. K. S., & Sommer, J. (1979). Superacids. Science, 206(4414), 13-20. doi:10.1126/science.206.4414.13 | es_ES |
dc.description.references | East, A. L. L., Liu, Z. F., McCague, C., Cheng, K., & Tse, J. S. (1998). The Three Isomers of Protonated Ethane, C2H7+. The Journal of Physical Chemistry A, 102(52), 10903-10911. doi:10.1021/jp983640l | es_ES |
dc.description.references | Esteves, P. M., Mota, C. J. A., Ramírez-Solís, A., & Hernández-Lamoneda, R. (1998). Potential Energy Surface of the C3H9+Cations. Protonated Propane. Journal of the American Chemical Society, 120(13), 3213-3219. doi:10.1021/ja973784y | es_ES |
dc.description.references | Esteves, P. M., Alberto, G. G. P., Ramírez-Solís, A., & Mota, C. J. A. (2000). Then-Butonium Cation (n-C4H11+): The Potential Energy Surface of Protonatedn-Butane. The Journal of Physical Chemistry A, 104(26), 6233-6240. doi:10.1021/jp001152j | es_ES |
dc.description.references | Hunter, K. C., & East, A. L. L. (2002). Properties of C−C Bonds inn-Alkanes: Relevance to Cracking Mechanisms. The Journal of Physical Chemistry A, 106(7), 1346-1356. doi:10.1021/jp0129030 | es_ES |
dc.description.references | Okumura, K., Tomiyama, T., Morishita, N., Sanada, T., Kamiguchi, K., Katada, N., & Niwa, M. (2011). Evolution of strong acidity and high-alkane-cracking activity in ammonium-treated USY zeolites. Applied Catalysis A: General, 405(1-2), 8-17. doi:10.1016/j.apcata.2011.07.007 | es_ES |
dc.description.references | Katada, N. (2004). Acidic property of modified ultra stable Y zeolite: increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt. Journal of Molecular Catalysis A: Chemical, 211(1-2), 119-130. doi:10.1016/j.molcata.2003.10.001 | es_ES |
dc.description.references | Katada, N., Suzuki, K., Noda, T., Sastre, G., & Niwa, M. (2009). Correlation between Brønsted Acid Strength and Local Structure in Zeolites. The Journal of Physical Chemistry C, 113(44), 19208-19217. doi:10.1021/jp903788n | es_ES |
dc.description.references | Michaelides, A., Liu, Z.-P., Zhang, C. J., Alavi, A., King, D. A., & Hu, P. (2003). Identification of General Linear Relationships between Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces. Journal of the American Chemical Society, 125(13), 3704-3705. doi:10.1021/ja027366r | es_ES |