- -

Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Niwa, M. es_ES
dc.contributor.author Suzuki, Kiwa es_ES
dc.contributor.author Morishita, N. es_ES
dc.contributor.author Sastre Navarro, German Ignacio es_ES
dc.contributor.author Okumura, K. es_ES
dc.contributor.author Katada, N. es_ES
dc.date.accessioned 2016-09-28T06:48:03Z
dc.date.available 2016-09-28T06:48:03Z
dc.date.issued 2013
dc.identifier.issn 2044-4753
dc.identifier.uri http://hdl.handle.net/10251/70527
dc.description.abstract [EN] Dependence of the activity for alkane cracking on the Bronsted acidity of HY and cation exchanged HY zeolites was clearly revealed by the periodic DFT calculation and the experimental confirmation. es_ES
dc.description.sponsorship The present work is supported by the Grant-in-Aids for Scientific Research (B) (21360396) and (B) (23360358) from Ministry of Education, Culture, Sports, Science and Technology, Japan. G.S. thanks the Spanish government for the provision of the excellence programme "Severo Ochoa" (project SEV 2012 0267).
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C3CY00195D
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//21360396/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//23360358/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Niwa, M.; Suzuki, K.; Morishita, N.; Sastre Navarro, GI.; Okumura, K.; Katada, N. (2013). Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation. Catalysis Science and Technology. 3(8):1919-1927. https://doi.org/10.1039/C3CY00195D es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3cy00195d es_ES
dc.description.upvformatpinicio 1919 es_ES
dc.description.upvformatpfin 1927 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 261094 es_ES
dc.contributor.funder Ministry of Education, Culture, Sports, Science and Technology, Japón
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kotrel, S., Knözinger, H., & Gates, B. C. (2000). The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous and Mesoporous Materials, 35-36, 11-20. doi:10.1016/s1387-1811(99)00204-8 es_ES
dc.description.references Haag, W. O. (1994). Catalysis by Zeolites – Science and Technology. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 1375-1394. doi:10.1016/s0167-2991(08)63680-0 es_ES
dc.description.references Narbeshuber, T. F., Vinek, H., & Lercher, J. A. (1995). Monomolecular Conversion of Light Alkanes over H-ZSM-5. Journal of Catalysis, 157(2), 388-395. doi:10.1006/jcat.1995.1304 es_ES
dc.description.references Babitz, S. M., Williams, B. A., Miller, J. T., Snurr, R. Q., Haag, W. O., & Kung, H. . (1999). Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Applied Catalysis A: General, 179(1-2), 71-86. doi:10.1016/s0926-860x(98)00301-9 es_ES
dc.description.references Van Bokhoven, J. A., Williams, B. A., Ji, W., Koningsberger, D. C., Kung, H. H., & Miller, J. T. (2004). Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption. Journal of Catalysis, 224(1), 50-59. doi:10.1016/j.jcat.2004.02.003 es_ES
dc.description.references XU, B., SIEVERS, C., HONG, S., PRINS, R., & VANBOKHOVEN, J. (2006). Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. Journal of Catalysis, 244(2), 163-168. doi:10.1016/j.jcat.2006.08.022 es_ES
dc.description.references Niwa, M., Nishikawa, S., & Katada, N. (2005). IRMS–TPD of ammonia for characterization of acid site in β-zeolite. Microporous and Mesoporous Materials, 82(1-2), 105-112. doi:10.1016/j.micromeso.2005.03.002 es_ES
dc.description.references SUZUKI, K., NODA, T., KATADA, N., & NIWA, M. (2007). IRMS-TPD of ammonia: Direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity. Journal of Catalysis, 250(1), 151-160. doi:10.1016/j.jcat.2007.05.024 es_ES
dc.description.references Niwa, M., Suzuki, K., Isamoto, K., & Katada, N. (2006). Identification and Measurements of Strong Brønsted Acid Site in Ultrastable Y (USY) Zeolite. The Journal of Physical Chemistry B, 110(1), 264-269. doi:10.1021/jp054442e es_ES
dc.description.references Katada, N., Suzuki, K., Noda, T., Miyatani, W., Taniguchi, F., & Niwa, M. (2010). Correlation of the cracking activity with solid acidity and adsorption property on zeolites. Applied Catalysis A: General, 373(1-2), 208-213. doi:10.1016/j.apcata.2009.11.022 es_ES
dc.description.references Swisher, J. A., Hansen, N., Maesen, T., Keil, F. J., Smit, B., & Bell, A. T. (2010). Theoretical Simulation of n-Alkane Cracking on Zeolites. The Journal of Physical Chemistry C, 114(22), 10229-10239. doi:10.1021/jp101262y es_ES
dc.description.references Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037 es_ES
dc.description.references Elanany, M., Koyama, M., Kubo, M., Selvam, P., & Miyamoto, A. (2004). Periodic density functional investigation of Brønsted acidity in isomorphously substituted chabazite and AlPO-34 molecular sieves. Microporous and Mesoporous Materials, 71(1-3), 51-56. doi:10.1016/j.micromeso.2004.03.018 es_ES
dc.description.references Rosenbach Jr., N., & Mota, C. J. A. (2008). A DFT–ONIOM study on the effect of extra-framework aluminum on USY zeolite acidity. Applied Catalysis A: General, 336(1-2), 54-60. doi:10.1016/j.apcata.2007.09.048 es_ES
dc.description.references VANSANTEN, R. (1997). Quantum-chemistry of zeolite acidity. Catalysis Today, 38(3), 377-390. doi:10.1016/s0920-5861(97)81505-0 es_ES
dc.description.references Chu, Y., Han, B., Fang, H., Zheng, A., & Deng, F. (2012). Influence of acid strength on the reactivity of alkane activation on solid acid catalysts: A theoretical calculation study. Microporous and Mesoporous Materials, 151, 241-249. doi:10.1016/j.micromeso.2011.10.030 es_ES
dc.description.references Macht, J., Carr, R. T., & Iglesia, E. (2009). Consequences of Acid Strength for Isomerization and Elimination Catalysis on Solid Acids. Journal of the American Chemical Society, 131(18), 6554-6565. doi:10.1021/ja900829x es_ES
dc.description.references Gounder, R., & Iglesia, E. (2011). The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 45(2), 229-238. doi:10.1021/ar200138n es_ES
dc.description.references Hamprecht, F. A., Cohen, A. J., Tozer, D. J., & Handy, N. C. (1998). Development and assessment of new exchange-correlation functionals. The Journal of Chemical Physics, 109(15), 6264-6271. doi:10.1063/1.477267 es_ES
dc.description.references Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized gradient approximation functionals. The Journal of Chemical Physics, 114(13), 5497-5503. doi:10.1063/1.1347371 es_ES
dc.description.references Reiher, M. (2006). Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry. Theoretical Chemistry Accounts, 116(1-3), 241-252. doi:10.1007/s00214-005-0003-2 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0 es_ES
dc.description.references Kresse, G., & Hafner, J. (1994). Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 6(40), 8245-8257. doi:10.1088/0953-8984/6/40/015 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 es_ES
dc.description.references Bučko, T., Hafner, J., Lebègue, S., & Ángyán, J. G. (2010). Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections. The Journal of Physical Chemistry A, 114(43), 11814-11824. doi:10.1021/jp106469x es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES
dc.description.references Sastre, G., Katada, N., Suzuki, K., & Niwa, M. (2008). Computational Study of Brønsted Acidity of Faujasite. Effect of the Al Content on the Infrared OH Stretching Frequencies. The Journal of Physical Chemistry C, 112(49), 19293-19301. doi:10.1021/jp807623m es_ES
dc.description.references Suzuki, K., Noda, T., Sastre, G., Katada, N., & Niwa, M. (2009). Periodic Density Functional Calculation on the Brønsted Acidity of Modified Y-Type Zeolite. The Journal of Physical Chemistry C, 113(14), 5672-5680. doi:10.1021/jp8104562 es_ES
dc.description.references Frising, T., & Leflaive, P. (2008). Extraframework cation distributions in X and Y faujasite zeolites: A review. Microporous and Mesoporous Materials, 114(1-3), 27-63. doi:10.1016/j.micromeso.2007.12.024 es_ES
dc.description.references Grajciar, L., Areán, C. O., Pulido, A., & Nachtigall, P. (2010). Periodic DFT investigation of the effect of aluminium content on the properties of the acid zeolite H-FER. Physical Chemistry Chemical Physics, 12(7), 1497. doi:10.1039/b917969k es_ES
dc.description.references Suzuki, K., Katada, N., & Niwa, M. (2007). Detection and Quantitative Measurements of Four Kinds of OH in HY Zeolite. The Journal of Physical Chemistry C, 111(2), 894-900. doi:10.1021/jp065054v es_ES
dc.description.references NODA, T., SUZUKI, K., KATADA, N., & NIWA, M. (2008). Combined study of IRMS-TPD measurement and DFT calculation on Brønsted acidity and catalytic cracking activity of cation-exchanged Y zeolites. Journal of Catalysis, 259(2), 203-210. doi:10.1016/j.jcat.2008.08.004 es_ES
dc.description.references Olah, G. A., Prakash, G. K. S., & Sommer, J. (1979). Superacids. Science, 206(4414), 13-20. doi:10.1126/science.206.4414.13 es_ES
dc.description.references East, A. L. L., Liu, Z. F., McCague, C., Cheng, K., & Tse, J. S. (1998). The Three Isomers of Protonated Ethane, C2H7+. The Journal of Physical Chemistry A, 102(52), 10903-10911. doi:10.1021/jp983640l es_ES
dc.description.references Esteves, P. M., Mota, C. J. A., Ramírez-Solís, A., & Hernández-Lamoneda, R. (1998). Potential Energy Surface of the C3H9+Cations. Protonated Propane. Journal of the American Chemical Society, 120(13), 3213-3219. doi:10.1021/ja973784y es_ES
dc.description.references Esteves, P. M., Alberto, G. G. P., Ramírez-Solís, A., & Mota, C. J. A. (2000). Then-Butonium Cation (n-C4H11+):  The Potential Energy Surface of Protonatedn-Butane. The Journal of Physical Chemistry A, 104(26), 6233-6240. doi:10.1021/jp001152j es_ES
dc.description.references Hunter, K. C., & East, A. L. L. (2002). Properties of C−C Bonds inn-Alkanes:  Relevance to Cracking Mechanisms. The Journal of Physical Chemistry A, 106(7), 1346-1356. doi:10.1021/jp0129030 es_ES
dc.description.references Okumura, K., Tomiyama, T., Morishita, N., Sanada, T., Kamiguchi, K., Katada, N., & Niwa, M. (2011). Evolution of strong acidity and high-alkane-cracking activity in ammonium-treated USY zeolites. Applied Catalysis A: General, 405(1-2), 8-17. doi:10.1016/j.apcata.2011.07.007 es_ES
dc.description.references Katada, N. (2004). Acidic property of modified ultra stable Y zeolite: increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt. Journal of Molecular Catalysis A: Chemical, 211(1-2), 119-130. doi:10.1016/j.molcata.2003.10.001 es_ES
dc.description.references Katada, N., Suzuki, K., Noda, T., Sastre, G., & Niwa, M. (2009). Correlation between Brønsted Acid Strength and Local Structure in Zeolites. The Journal of Physical Chemistry C, 113(44), 19208-19217. doi:10.1021/jp903788n es_ES
dc.description.references Michaelides, A., Liu, Z.-P., Zhang, C. J., Alavi, A., King, D. A., & Hu, P. (2003). Identification of General Linear Relationships between Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces. Journal of the American Chemical Society, 125(13), 3704-3705. doi:10.1021/ja027366r es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem